
Quick Reference

Quick Reference

Links
Using the Functions Library

Functions by Category

Function Summary

Function Definitions

Glossary

Functions Library Version: 1-0

ETAC Programming Language Version: 1-1

ETAC Interpreter Version: 3-0-6-ena

Functions Library

Inclusion File: etacFunctions.etac

Data Object Name: etacFunctions

Number of Functions: 60

Release Date: 1 August 2020

Functions ETAC Script Library
1 August 2020

Copyright © Victor Vella (2020)
All rights reserved.

 TM

Other Related ETAC Documents
ETAC_Preliminaries.pdf Preliminaries before using ETAC
ETACOverview.pdf An Overview of ETAC
ETACProgLang(Official).pdf The Official ETAC Programming Language
RunETAC.chm Run ETAC Scripts Help
ETACWithCPP.pdf ETAC: Interacting with C++
ETACCompiler.pdf The ETAC Compiler
ETACCompiler.chm ETAC Compiler Help
ETACErrorCodes.pdf ETAC Compilation and Run-time Error Codes

Legal Information
ETAC and (the ETAC logo) are unregistered trademarks (™) of Victor Vella for computer software
incorporating an implementation of a computer programming language . There may be other owners of
the “ETAC” trademark used for other purposes.

Unicode is a registered trademark (®) of Unicode, Inc. in the United States and other countries.

This document is copyright © by Victor Vella (2020). All rights reserved. Permission is hereby
granted to make any number of exact electronic copies of this document without any remuneration
whatsoever. Permission is also granted to make annotated electronic copies of this document for
personal use only. Except for the permissions granted, and apart from any fair dealing as permitted
under the relevant Copyright Act, no part of this document may be reproduced or transmitted in any
form or by any means without the express permission of the author. The copyright of this document
shall remain entirely with the original copyright holder.

The author of this document shall not be liable for any direct or indirect consequences arising with
respect to the use of all or any part of the information in this document, even if such information is
inaccurate or in error. The information in this document is subject to change without notice.

Contents

Contents

Quick Reference

Contents

Document Conventions

1. Introduction

2. Features of an ETAC Script Library

3. Using an ETAC Script Library

4. Functions ETAC Script Library Reference

4.1 Functions by Category

4.2 Function Summary

4.3 Function Definitions

Bibliography

Glossary

Document Conventions

Document Conventions

The following symbolic conventions are used in this document.

Symbol Meaning

‹x› separates x as a unit of information from the surrounding text.

x··· middle ellipsis means zero, one, or more of the same kind as x.

[x] means that x optional.

{x} means that x is the default value.

(x) groups x as a unit.

x|y means that only x or y applies, but not both (could have more than two options).

… ellipsis represents omitted text (as usual).

WS represents a whitespace character (916 to D16, or 2016).

SP represents a space character (2016).

CR represents a carriage return character (D16).

LF represents a linefeed character (A16).

EL represents the character or characters indicating the end of a text line.

n16 represents a number in base 16 (hexadecimal).

U+x represents a Unicode code point where x is in hexadecimal notation.

text maroon coloured italic text is a link to the text’s definition.

text underlined green text is a link into the document.

text bold green text is a link into the document.

♦ indicates the end of a block of text.

Functions ETAC Script Library

This document defines the functions in the Functions Library for version 1-1 of the ETAC™
Programming Language implemented in program RunETAC.exe version 3-0-6-ena. The Functions
Library described in this document is version 1-0.

(Australian English)

1. Introduction
ETAC™ (pronounced: E-tack) is a syntactically simple but extremely versatile dictionary and stack
based interpreted script programming language. The ETAC programming language is not based on any
other programming language. Familiarity with the ETAC programming language is required to fully
understand this document. See the document ETACOverview.pdf for an overview of the language, and
also the document ETACProgLang(Official).pdf for the official definition of the language.

Since ETAC is a script programming language, libraries of ETAC functions can be written in ETAC
text script for use in ETAC programs. Such libraries are called ETAC script libraries (abbreviated as
“ESL”). This document contains the definitions and use of one such library for general purpose usage.
The library is referred to as the “Functions Library”.

The Functions Library is an ETAC script library containing ETAC functions defined in ETAC text
script. Desired functions from the Functions Library can be included into any ETAC text script via the
etacFunctions.etac inclusion file. The functions in the Functions Library are not defined for any
particular purpose, and are for general use.

2. Features of an ETAC Script Library
An ETAC script library (ESL) is an ETAC text script file containing ETAC function definitions. The
ETAC functions are constructed in such a way that the same function is allocated only once within a
main ETAC session, even when the same ESL file is included more than once.

An ETAC programmer can arrange for an ESL so that only the desired ETAC functions, and their
dependencies, are allocated within a main ETAC session. This feature is useful when only a few
functions of an ESL containing a large number of ETAC function definitions are required in an ETAC
program. By default, all of the ETAC functions in an ESL are included in an ETAC program.

The included functions of an ESL are typically allocated within a named data object having a name
based on the name of the ESL.

3. Using an ETAC Script Library
An ETAC script library (ESL) exists in an ETAC text script file, and can be included in any ETAC text
script as an inclusion file (using the ‹::include› pre-processor inclusion command). An ESL is
typically included at the top of the ETAC text script. The processing of the ESL inclusion file causes a
new named data object to be created containing the desired ETAC function allocations; the data object
name is based on the name of the ESL. For example, the data object name into which the desired
functions of the Functions Library are included is called etacFunctions.

Each ETAC function within an ESL is identified by a pre-processor definition name beginning with the
initials of the ESL name followed by the name of the particular function. For example, if an ESL
function name is xxxIndentLines, then the corresponding pre-processor definition name would be
@XXX_INDENT_LINES, where xxx and XXX are the initials of the ESL name (for the Functions Library,
XXX is F, so the function name identifiers are fIndentLines and @F_INDENT_LINES, respectively).

The pre-processor definition name of each ETAC function within an ESL is called the ESL function
identifier (for example, @F_INDENT_LINES is an ESL function identifier). To explicitly include a
particular ESL function within some ETAC text script, the corresponding ESL function identifier must
be defined before the ESL inclusion file is included. For example, to include the fIndentLines
function of the Functions Library into ETAC text script, ‹::define @F_INDENT_LINES› must be
present before ‹::include "etacFunctions.etac"›. If the included function calls other ESL
functions, then those other ESL functions are automatically included as well.

Including an ESL inclusion file without specifying the definition of any ESL function identifier of that
ESL results in all of the functions in that ESL being included. For example, specifying only
‹::include "etacFunctions.etac"› without defining any of the ESL function identifiers of the
Functions Library beforehand (in the same ETAC text script) results in all of the ETAC functions within
the Functions Library to be included into the data object etacFunctions.

If an ESL function identifier is defined more than once for the same ESL inclusion file, then the
corresponding ETAC function is allocated only once within the main ETAC session, even when the
same ESL inclusion file is included more than once.

In summary, to use an ETAC script library, the following are required:

 The file name of the ESL, which must be included before any of the ESL functions are used.

 A list of ESL function identifiers (corresponding to the desired ESL functions), which must be
defined before the inclusion of the ESL file. The identifiers are obtained from the ESL source
file or documentation.

 The name of the ESL data object (obtained from the ESL source file or documentation), which
is automatically created by the inclusion of the ESL.

 A variable used to access the ESL data object. The desired ESL functions are accessed via that
variable, which is assigned from the return value of the global @NewData ETAC function.

The following example is an illustration of how to use the Functions Library in a main ETAC program.

Using the Functions Library

[*::10ETAC-SOURCE-V1::*]
[* ETAC main program file illustrating how to use the Functions Library. *]
::include "TACGlobal.PTAC" [* Required by the Functions Library. *]

...

::define @F_INDENT_LINES [* Allows allocation of fIndentLines function. *]
::define @F_STR_TO_LINES [* Allows allocation of fStrToLines function. *]
::define @F_CREATE_FILE [* Allows allocation of fCreateFile function. *]
::include "etacFunctions.etac" [* Functions Library inclusion file. *]
[* etacFunctions.etac creates the etacFunctions data object containing the three functions. *]

...

start_local; [* Create a local dictionary for the main program. *]
[* Other program variables allocated here. *]

 Fnts :- @NewData("etacFunctions"); [* Allocate Fnts variable for accessing ESL functions. *]

 [* PROGRAM *]
 ...

 Seq := Fnts.fStrToLines(Str "[{\r\n}\r\n]"); [* Call to ESL function. *]

 ...

end_local;

In the example above, three ETAC functions, fIndentLines, fStrToLines, and fCreateFile,
defined in the Functions Library are to be used in the program (the three functions are for illustrative

purposes only). The corresponding ESL function identifiers of those functions are defined (via
::define) so that the three functions are automatically allocated in the etacFunctions data object
when the Functions Library inclusion file, etacFunctions.etac, is included in the program. The
three ESL function identifiers must be defined before the inclusion of the Functions Library inclusion
file. If no ESL function identifiers were defined, then all the ETAC functions of the Functions Library
would have been allocated in the etacFunctions data object, even though only some of those
functions are used in the program. Those three functions will not be allocated again within the
etacFunctions data object, even if they were to be specified for inclusion in another ETAC session.

Somewhere in the program, after the inclusion of the Functions Library, a replicate of the
etacFunctions data object is created by the global @NewData function, and allocated to a variable,
Fnts, to access the ETAC functions within the data object. The etacFunctions data object is
replicated (via @NewData) rather than used directly (via @Data) so as to keep the original ETAC
functions within the data object unchanged; ETAC functions within an ESL may contain initialised
persistent local data which needs to remain as originally initialised. Using an ESL data object directly
may cause undesirable changes in any persistent local data within that data object.

4. Functions ETAC Script Library Reference
This section contains information about the Functions ETAC Script Library (referred to as the
“Functions Library”). The Functions Library exists in the etacFunctions.etac inclusion file. When that
file is included (via ::include) in ETAC text script, a data object named etacFunctions is
automatically created containing the desired functions. Those functions can then be assessed via a
replicate of that data object.

4.1 Functions by Category
The following is a list of the Functions Library functions organised by category.

Disk File

fCreateFile ♦ fIsFileWritable ♦ fPathExists ♦ fWriteFile

File Data and Memory

fCreateFile ♦ fGetMemSize ♦ fLinesToMem ♦ fMemToHexChars ♦ fReadTextLines ♦
fWriteFile

File Path

fCvtRelativePath ♦ fGetWindowsDir ♦ fIsOnlyDirPath ♦ fIsOnlyFileName ♦ fIsRelativePath

Number

fAlignVal ♦ fCeil ♦ fFloor ♦ fFromWinCC ♦ fHexToInt ♦ fToBinStr ♦ fToBoolStr ♦

fToHexStr ♦ fToWinCC

String

fBlotStrChars ♦ fCaptureComments ♦ fCaptureQuotes ♦ fExtractInnerStr ♦ fFormatStr ♦
fGetStrU ♦ fIsStrDblQuoted ♦ fIsStrDec ♦ fIsStrInt ♦ fIsStrNegInt ♦ fIsStrPosInt ♦
fIsStrZeroInt ♦ fMatchString ♦ fMid ♦ fParseString ♦ fPutStrU ♦ fRemQuotes ♦

fRepeatStr ♦ fReplSubStr ♦ fStrToLines ♦ fTrimQuotes ♦ fTrimStrWS

String Sequence

fDelDuplStrs ♦ fIndentLines ♦ fLinesToMem ♦ fLinesToStr ♦ fQuickSort ♦

fReadTextLines ♦ fSortSeq ♦ fStrInSeq ♦ fStrToLines

Unicode

fCharToCP ♦ fCPToChar ♦ fGetStrU ♦ fPutStrU

Other

fDateTimeFormatted ♦ fExecETACStr ♦ fGetKWArgs ♦ fGetKWSyntax ♦ fLambda ♦ fLambdaApp ♦

fShowBusy ♦ fRunETACFile

4.2 Function Summary
The table below contains an alphabetical list of the Functions Library functions.

Function Summary for the Functions Library

Function Description
fAlignVal Rounds up an integer value to the next specified byte alignment.

fBlotStrChars Replaces a length of characters in a string with a repeated character.

fCaptureComments Returns a sequence identifying the locations and lengths of ETAC
comments within a string.

fCaptureQuotes Returns a sequence identifying the locations and lengths of quoted
substrings within a string.

fCeil Returns the ceiling of a decimal number.

fCharToCP Converts the first character of a string to a Unicode code point.

fCPToChar Converts a Unicode code point to a character.

fCreateFile Creates a new empty file if it does not exist.

fCvtRelativePath Returns the full path of a file path, which may be relative to a
specified directory path.

fDateTimeFormatted Returns a formatted date and time string of the current date and
time.

fDelDuplStrs Deletes duplicate elements of a string sequence.

fExecETACStr Executes a string containing ETAC text.

fExtractInnerStr Extracts the substring from a string enclosed within brackets.

fFloor Returns the floor of a decimal number.

fFormatStr Replaces certain symbols within a format string.

fFromWinCC Converts a Windows-1252 character code to a string.

fGetKWArgs Processes keywords and their arguments.

fGetKWSyntax Gets the keyword-arguments syntax of a keyword template.

fGetMemSize Returns the byte size of the usable data in a memory object.

fGetStrU Returns the middle part (specified as u-chars) of a string.

fGetWindowsDir Get the full path of the system Windows directory.

fHexToInt Converts the characters of a hexadecimal string to an integer.

fIndentLines Indents all text lines in a string sequence.

fIsFileWritable Checks that a file is writeable if it exists.

fIsOnlyDirPath Determines whether a path specification is a directory path only.

fIsOnlyFileName Determines whether a file path specification contains only a file
name (and extension).

fIsRelativePath Determines whether a file path specification is a relative path.

fIsStrDblQuoted Determines whether a string is delimited by double-quote characters.

fIsStrDec Determines whether a string is in the form of decimal number.

fIsStrInt Determines whether a string is in the form of an integer.

fIsStrNegInt Determines whether a string is in the form of a negative integer.

fIsStrPosInt Determines whether a string is in the form of a positive integer.

fIsStrZeroInt Determines whether a string is in the form of a zero integer.

fLambda General lambda abstraction function creator for any predefined
function or procedure.

fLambdaApp General lambda application function creator for any predefined
function or procedure.

fLinesToMem Converts a string sequence to a memory object with EOL characters.

fLinesToStr Converts a string sequence to a string with EOL characters.

fMatchString Matches a string based on a pattern string.

fMemToHexChars Converts a portion of a memory object into a hexadecimal string.

fMid Returns the middle part of a string.

fParseString Parses a string based on a pattern string and possibly sub-patterns.

fPathExists Determines whether a specified type of disk entity exists for a path
specification.

fPutStrU Replaces a substring (specified as u-chars) in a string.

fQuickSort Sorts a sequence in place using the quick sort algorithm.

fReadTextLines Reads the text lines of a text file into a string sequence.

fRemQuotes Trims a string by removing leading and trailing single or double
quotes and then spaces.

fRepeatStr Creates a string from repeats of a given string.

fReplSubStr Replaces all substrings of a string matching a pattern string.

fRunETACFile Runs an ETAC (or TAC) file as it would be run from RunETAC.exe.

fShowBusy Shows or hides a busy message.

fSortSeq Sorts a sequence in place using the insertion sort algorithm.

fStrInSeq Returns the index of a substring existing in a string sequence.

fStrToLines Converts a string containing EOLs to a sequence of strings.

fToBinStr Converts an integer to a binary string.

fToBoolStr Converts a boolean value to a string representing that value.

fToHexStr Converts an integer to a hexadecimal string.

fToWinCC Converts a character to its Windows-1252 character code.

fTrimQuotes Removes single and double quotes from only the ends of a string.

fTrimStrWS Trims a string by removing leading and trailing whitespaces.

fWriteFile Writes data to the specified file possibly with backup.

“EOL” stands for “end-of-line”.

4.3 Function Definitions
The following boxes contain a description of all the Functions Library functions. The functions need
to be called in the context of the etacFunctions data object. The corresponding ESL function
identifier is shown at the top right of each box.

4.3.1.1 fAlignVal

fAlignVal
fAlignVal val align  res @F_ALIGN_VAL

val A non-negative integer stack object.

align A positive integer stack object.

res A non-negative integer stack object.

Details
Rounds up an integer value (val) to the next specified byte alignment (align) returning the result (res).
If val is already aligned as specified then res will be identical to val.

align must be a positive power of 2 (ie: 2, 4, 8, 16, ···), otherwise the consequence is undefined.

Examples
The following illustrations show how the fAlignVal function can be used.

(1) fAlignVal(22 4);
(2) Val := fAlignVal(22 2);

The call in example (1) returns 24 because the argument, 22, is not aligned on the next 4 byte
boundary, which is 24.

In example (2), Val will be 22 because that value is already aligned on a 2 byte boundary. ♦
4.3.1.2 fBlotStrChars

fBlotStrChars
fBlotStrChars offset len char str  out-str @F_BLOT_STR_CHARS

offset A non-negative integer stack object.

len A non-negative integer stack object.

char A string stack object.

str A string stack object.

out-str A string stack object.

Details
Replaces a w-char length (len) of w-char characters in a string (str) at a w-char offset (offset) with a
string of a repeated UCS-2 character (char) of the same length.

offset is a zero-based w-char character offset into str. If offset indicates a character beyond the last
w- char character of str, then no action occurs and out-str will be identical to str. The character at
offset must represent a Unicode scalar value.

len is the maximum number of w-char characters to be replaced in str beginning at offset. The
substring in str to be replaced must be a well-formed Unicode substring. If len exceeds the remaining
characters of str, then only the remaining characters are replaced. len is also the number of repeated
first character of char to replace the substring of str.

Only the first character of char is used, which must be a UCS-2 (BMP Unicode scalar value) character.
That character is repeated len times and replaces up to len w-char characters in str.

Examples
The following illustrations show how the fBlotStrChars function can be used.

(1) fBlotStrChars(5 1 " " "hello-ha");
(2) fBlotStrChars(6 4 "*%" "hello-ha");

(3) fBlotStrChars(8 4 "*%" "hello-ha");
(4) fBlotStrChars(6 2 "*" "thumbs\#1F44D#up");
(5) fBlotStrChars(1 3 "" "hello-ha");

Example (1) returns the string ‹hello ha›.

Example (2) returns the string ‹hello-****›.

Example (3) returns the string ‹hello-ha› because offset is beyond the last character of str.

Example (4) returns the string ‹thumbs**up›. Note that the Unicode supplementary plane code point
U+1F44D (Thumbs Up Sign) is two w-char characters wide. Because len is the w-char character
length, both w-chars (surrogate pairs) of the character at offset 6 are replaced, resulting in two
asterisks rather than one. Also note that if len were 1, or offset were 7, then an error event would have
occurred because the substring being replaced would not have been a well-formed Unicode string.

Example (5) returns the string ‹hello-ha› because the specified substring is not replaced since char
does not contain a first character. ♦
4.3.1.3 fCaptureComments

fCaptureComments
fCaptureComments str  seq @F_CAPTURE_COMMENTS

str A string stack object.

seq A sequence of sequences.

Details
Returns (seq) a sequence of w-char character offset\length pairs (in a sequence) identifying the
locations and lengths of ETAC comments within a string (str). The comments can be nested.

The comment delimiters in str need to be properly matched as single-asterisk delimiters to be
recognised correctly (each ‹[*› must match with ‹*]›).

The returned sequence, seq, will contain zero or more two-element sequences. Each two-element
sequence identifies the location of a comment within str. The first element of a two-element sequence
will be a w-char character offset integer, and the second element will be a w-char character length
integer. If there are no comments in str, then an empty sequence will be returned. The returned
sequence can be used directly with the get_str and put_str ETAC commands.

Examples
The following illustrations show how the fCaptureComments function can be used.

(1) fCaptureComments('This string [*with [*comments*] here*] and [*here*]');
(2) fCaptureComments('This string [*with comments**] here*] and [*here*]');

Example (1) returns the sequence [[12, 26], [43, 8]], indicating the locations (offset\length
pairs) of the (highlighted) comments within the string argument.

Example (2) returns the sequence [[12, 18]], indicating the (highlighted) comment ‹[*with
comments**]›, even though the string argument contains the two comments ‹[*with comments**]
here*]› and ‹[*here*]›. The reason that the comments were not properly captured is that
fCaptureComments only recognises matched and nested ‹[*› and ‹*]› as comment delimiters. ♦

4.3.1.4 fCaptureQuotes

fCaptureQuotes
fCaptureQuotes str  seq @F_CAPTURE_QUOTES

str A string stack object.

seq A sequence.

Details
Returns (seq) a sequence of w-char character offset\length pairs (in a sequence) identifying the
locations and lengths of single-quoted (U+0027) or double-quoted (U+0022) substrings within a string
(str). Backslash escaped quotes are ignored within the quoted substrings.

The string delimiters in str need to be properly matched to be recognised correctly (each ‹"› must
match with the next un-escaped ‹"›, and each ‹'› must match with the next un-escaped ‹'›).

The returned sequence, seq, will contain zero or more two-element sequences. Each two-element
sequence identifies the location of a single or double-quoted substring within str. The first element of
a two-element sequence will be a w-char character offset integer, and the second element will be a
w- char character length integer. If there are no single or double-quoted substrings in str, then an
empty sequence will be returned. The returned sequence can be used directly with the get_str and
put_str ETAC commands.

Example
The following illustration shows how the fCaptureQuotes function can be used.

(1) fCaptureQuotes('This string "with \"quotes\" here" and '¯here'¯');

Example (1) returns the following sequence [[12, 22], [39, 6]], indicating the (highlighted)
locations (offset\length pairs) of the quoted substrings within the string argument. Note that ‹'¯›
represents a single quote character within a single quoted ETAC string. ♦
4.3.1.5 fCeil

fCeil
fCeil num  ceil @F_CEIL

num A decimal or integer stack object.

ceil A decimal or integer stack object.

Details
Returns (ceil) the ceiling of a decimal or integral number (num). The ceiling of a number is the
smallest integer greater than or equal to that number.

If num is an integer then ceil will also be an integer equal to num. If num is a decimal then ceil will be
an integer if it is within the range of an integer (–2,147,483,648 to 2,147,483,647), otherwise it will be
an integral decimal. ♦
4.3.1.6 fCharToCP

fCharToCP
fCharToCP char  cp @F_CHAR_TO_CP

char A string stack object.

cp An integer stack object.

Details
Returns the first u-char character of a string (char) as a Unicode scalar value. If char is an empty
string, then cp will be zero. ♦

4.3.1.7 fCPToChar

fCPToChar
fCPToChar cp  char @F_CP_TO_CHAR

cp An integer stack object.

char A string stack object.

Details
Converts a Unicode code point (cp) to a u-char character (char). If cp is zero or not a Unicode scalar
value (a Unicode surrogate code point is not a scalar value), char will be an empty string. ♦
4.3.1.8 fCreateFile

fCreateFile
fCreateFile file-path @F_CREATE_FILE

file-path A string stack object.

Details
Creates a new empty disk file as specified (file-path) if it does not exist on disk. If the specified file
already exists on disk, this function has no effect. An error event will occur if the file cannot be
created. ♦
4.3.1.9 fCvtRelativePath

fCvtRelativePath
fCvtRelativePath dir-path file-path  path-str @F_CVT_RELATIVE_PATH

dir-path A string stack object.

file-path A string stack object.

path-str A string stack object.

Details
Returns the full file path specification (path-str) of a specified file path (file-path), which may be
relative to a specified directory path (dir-path). If file-path is a relative path then the returned path
specification is relative to dir-path, otherwise the returned path specification is the full file path of
file- path.

Note that the current directory symbol, ‹.› (dot), is regarded as an absolute path. For example,
‹.\MyFile.txt› is regarded as an absolute path.

Examples
The following illustrations show how the fCvtRelativePath function can be used.

(1) fCvtRelativePath('C:\MyFolder\Other' 'Programs\TextFile.txt');
(2) fCvtRelativePath('C:\MyFolder\Other' 'C:\Files\TextFile.txt');

Example (1) returns the string ‹C:\MyFolder\Other\Programs\TextFile.txt› because the second
argument is a relative path to the first argument.

Example (2) returns the string ‹C:\Files\TextFile.txt› because the second argument is an
absolute path; the first argument is ignored. ♦

4.3.1.10 fDateTimeFormatted

fDateTimeFormatted
fDateTimeFormatted fmt-dt utc  dt-str @F_DATE_TIME_FORMATTED

fmt-dt A string stack object.

utc An integer stack object containing a logical boolean value.

dt-str A string stack object.

Details
Returns a formatted date and time string (dt-str) of the current date and time based on a specified
format (fmt-dt). If utc is true, the returned string represents the UTC (“Universal Time Coordinated”)
date and time (previously referred to as “Greenwich Mean Time” or GMT), otherwise it represents the
local date and time.

The following table shows the date\time symbols and their meaning within the format string fmt-dt.
Other symbols (eg: ‘/’) are presented as given. Where a single digit is specified, only leading zero
digits are suppressed; other non-zero digits are presented. For example, if the seconds is 20, then
‹[s]› will display 20; if the seconds is 3, then ‹[s]› will display 3, but ‹[ss]› will display 03.

Desired Date and Time Format Symbol

Year (four digits, last two digits) [yyyy], [yy]

Month (long name, short name, two digits, one digit) [MMMM], [MMM], [MM], [M]

Day (long name, short name, two digits, one digit) [dddd], [ddd], [dd], [d]

12 hour (two digits, one digit) [hh], [h]

24 hour (two digits, one digit) [HH], [H]

Minute (two digits, one digit) [mm], [m]

Second (two digits, one digit) [ss], [s]

Fraction of seconds (3 digits) [f]

AM\PM (A\P, AM\PM, a\p, am\pm) [T], [TT], [t], [tt]

Examples

The following illustrations show how the fDateTimeFormatted function can be used.

(1) fDateTimeFormatted("Today is [dd]/[MM]/[yyyy] [HH]:[mm]:[ss]", false);
(2) fDateTimeFormatted("Today is [ddd] [dd]-[M]-[yy] [h]:[mm]:[s].[f] [tt]",

true);
(2) fDateTimeFormatted("It is [dddd], day [d], in the month of [MMMM], in the

year [yyyy] AD.", true);

Example (1) returns the current local date and time in a form such as ‹Today is 20/05/2014
19:06:23›.

Example (2) returns the current UTC date and time in a form such as ‹Today is Tue 20-5-14
7:06:23.592 pm›.

Example (3) returns the current UTC date and time in a form such as ‹It is Tuesday, day 20, in
the month of May, in the year 2014 AD.›. ♦

4.3.1.11 fDelDuplStrs

fDelDuplStrs
fDelDuplStrs in-seq  out-seq @F_DEL_DUPL_STRS

in-seq A string sequence.

out-seq A string sequence.

Details
Deletes duplicate elements of a string sequence (in-seq) returning a new string sequence (out-seq).
Note that the original string sequence, in-seq, is not modified. All strings in the returned string
sequence will be unique.

The function leaves the first one of the duplicate strings and removes the other duplicates.

Examples
The following illustrations show how the fDelDuplStrs function can be used.

(1) Seq := ["hello", "goodbye", "hello"]; RtnSeq := fDelDuplStrs(Seq);
(2) RtnSeq := fDelDuplStrs(fReadTextLines("MyTextFile.txt"));

Example (1) returns the new sequence ‹["hello", "goodbye"]› in RtnSeq, leaving the original
sequence in Seq unmodified.

Example (2) assumes that the specified file exists, and removes duplicate text lines from an internal
copy of the file data with no duplicate lines, returning the result in RtnSeq. Note that in this example,
the fReadTextLines function returns a string sequence containing the data of the specified file. ♦
4.3.1.12 fExecETACStr

fExecETACStr
fExecETACStr str @F_EXEC_ETAC_STR

str A string stack object.

Details
Executes a string (str) containing ETAC text. The string is executed as ETAC text script, with the
inclusion file TACGlobal.PTAC automatically included before the string.

fExecETACStr effectively executes the following in a new ETAC session.

[*::10ETAC-SOURCE-V1::*]
::include TACGlobal.PTAC
str;

Examples
The following illustrations show how the fExecETACStr function can be used.

(1) fExexETACStr("(3 + 5)");
(2) fExexETACStr("add2 3 5;");
(3) fExexETACStr("exec {add2 3 5;}");

Examples (1) to (3) return the value 8 on the object stack. ♦

4.3.1.13 fExtractInnerStr

fExtractInnerStr
fExtractInnerStr in-str  out-str @F_EXTRACT_INNER_STR

in-str A string stack object.

out-str A string stack object.

Details
Extracts the substring (out-str) from a string (in-str) enclosed within brackets. in-str must begin with
one of the bracket characters, ‹(›, ‹[›, ‹{›, and end with the corresponding bracket character, ‹)›, ‹]›,
‹}›, otherwise out-str will be the same as in-str. If in-str is delimited as said, out-str will contain the
text in-between, but excluding, the bracket characters.

Examples
The following illustrations show how the fExtractInnerStr function can be used.

(1) fExtractInnerStr("[the string]");
(2) fExtractInnerStr("not delimited by brackets");
(3) fExtractInnerStr("[mismatched brackets)");

Example (1) returns ‹the string›.

Example (2) returns ‹not delimited by brackets› because in-str was not delimited by the
appropriate brackets.

Example (3) returns ‹[mismatched brackets)› because the outer brackets to not correspond. ♦
4.3.1.14 fFloor

fFloor
fFloor num  floor @F_FLOOR

num A decimal or integer stack object.

floor A decimal or integer stack object.

Details
Returns (floor) the floor of a decimal or integral number (num). The floor of a number is the largest
integer less than or equal to that number.

If num is an integer then floor will also be an integer equal to num. If num is a decimal then floor will
be an integer if it is within the range of an integer (–2,147,483,648 to 2,147,483,647), otherwise it will
be an integral decimal. ♦
4.3.1.15 fFormatStr

fFormatStr
fFormatStr fmt-str repl-seq  str @F_FORMAT_STR

fmt-str A string stack object.

repl-seq A numeric or string sequence, or a null stack object (?).

str A string stack object.

Details
Replaces symbols within a format string (fmt-str), returning a formatted string (str). This function
creates a new temporary local dictionary when processing fmt-str.

The symbols within fmt-str are of the form:

1. ‹%n%› where n is a positive integer. There can be more than one %n% for a particular n, but no n
can exceed the number of elements in repl-seq. Each n is an index into repl-seq, which must be a
numeric or string sequence. The string or number at that index (n) replaces all the %n% in fmt-str.
Whitespaces must not exist between the percent characters and n.

2. ‹%*› is replaced with %. Note that % is special everywhere else, so an actual literal % must be
represented as ‹%*›.

3. ‹%(expression)%› where (expression) is an ETAC expression, which must return a number or
string when activated. The symbol is replaced by the string form of the returned value.

4. ‹%{procedure}%› where {procedure} is an ETAC procedure, which must return a number or string
when activated. The symbol is replaced by the string form of the returned value.

5. ‹%variable%› where variable is an ETAC variable, which must return a number or string when
activated. The symbol is replaced by the string form of the returned value. Whitespaces must not
exist between the percent characters and variable. Note that the value of the dictionary item
represented by variable can be a procedure, which is executed, returning a number or string.

Any number of the above symbols can be used in the same fmt-str. The command cpy can be used
within expression (3) and procedure (4) above. cpy is identical to the ETAC command copy_top. If
symbol (1) is not used, then the second argument (fmt-str) to the function is ignored (it must be the null
stack object).

If a symbol is correct but the resulting value could not be converted to a string, then the symbol is
replaced by ‹?text?›, where text is the text between the percent characters of the symbol. If a symbol
could not be processed then it remains as is.

The function returns the modified string str.

Examples
The following illustrations show how the fFormatStr function can be used. The symbols mentioned
above are highlighted (pink) in the examples.

(1) fFormatStr("The %1% chased his %2%." ["dog", "tail"]);
(2) fFormatStr("Some people %1% %1% %1% themselves 10%* of the time %1%edly"

["repeat"]);
(3) Var := "programmers"; fFormatStr("Hello %Var%" ?);
(4) Var := {("pro" + "grammers");}; fFormatStr("Hello %Var%" ?);
(5) fFormatStr('Hello %("pro" + "grammers")%' ?);
(6) fFormatStr('Hello %{add2 "pro" "grammers";}%' ?);
(7) fFormatStr("The value of %1% times %2% is %(&@ V :- cpy (2 * 3))%. That

value %V% is %4%." ["two", 3, "incorrect", "correct"]);

Example (1) returns ‹The dog chased his tail.›.

Example (2) returns ‹Some people repeat repeat repeat themselves 10% of the time
repeatedly›.

Examples (3) to (6) return ‹Hello programmers›.

Example (7) returns ‹The value of two times 3 is 6. That value 6 is correct.›. The
variable V is allocated temporarily within fFormatStr. Note the use of the special cpy command,
which is the same as the copy_top ETAC command. ♦

4.3.1.16 fFromWinCC

fFromWinCC
fFromWinCC wcc  char @F_FROM_WIN_CC

wcc A non-negative integer stack object.

char A string stack object.

Details
Converts a Windows-1252 character code (wcc) to a string (char) containing the corresponding
character. wcc must be a non-negative integer less than 256, otherwise the consequence is undefined.
If wcc is zero, then char will be empty. ♦
4.3.1.17 fGetKWArgs

fGetKWArgs
fGetKWArgs tmpl arg-str sep  bool str-seq @F_GET_KW_ARGS

tmpl A string stack object, or a string sequence.

arg-str A string stack object.

sep A string stack object, or a null stack object (?).

bool An integer stack object containing a logical boolean value.

str-seq A string sequence.

Details
Processes keywords and their arguments (arg-str), based on a keyword template (tmpl), into a string
sequence tree (str-seq). Note that this function operates in the same way as the ETAC command
kw_args.

sep is a string containing three UCS-2 (BMP Unicode scalar value) characters. The left-most character
determines the character for separating the parameters in the keyword template specified in tmpl. The
middle character determines the source argument separators in the argument string (arg-str). That
character cannot be a whitespace. The right-most character must be a zero character (0). For example,
the string ‹,#0› indicates that the parameters specified in tmpl are separated by commas (the default),
and the arguments in arg-str are separated by a hash character. The default is effectively ‹,,0›, and is
indicated by a null stack object (?) for sep.

tmpl is either a string indicating a single keyword template, or a sequence of strings each of which is
part of a nested keyword template. The first sequence element specifies the main group of template
blocks; each other element specifies a keyword block. A string value for tmpl is effectively a sequence
containing that string value.

Important Note

If any element of tmpl does not have a valid syntax, the consequence is unpredictable. fGetKWArgs
does not cater for elements with an invalid syntax.

arg-str is the source string to be parsed, consisting of keywords and their arguments. ETAC comments
within arg-str are logically replaced with one space, unless the comments are within a pair of double
quotes. Backslashes (‹\›) in arg-str that are outside of string blocks are ignored and the character
following a backslash is accepted literally. Escaped ETAC comments outside of string blocks are
retained, as in this example, ‹KW=argument \[*comment retained*\]›. The backslashes are
automatically removed, leaving ‹KW=argument [*comment retained*]› as the effective arg-str.
Without the backslashes in the example, the comment is replaced with a single space. arg-str can
include double-angle quoted substrings (the :!KA_ANGLE_QUOTES: flag is automatically applied), so
the example above can be presented as ‹KW=argument «[*comment retained*]»› to retain the
comment.

bool indicates whether arg-str has matched the keyword template in tmpl. If bool is true, the match
was successful, and the parsed arg-str will be contained in the returned output tree (str-seq). If bool is
false, the match failed, and str-seq will contain a sequence of strings describing the reasons for the
failure.

str-seq is the output tree containing nested sequences for each matched block corresponding to the
keyword template in tmpl. Each matched and parsed block consists of a sequence containing one or
more subsequences. Each subsequence contains string elements. The first element in the subsequence
is the matched keyword, and the subsequent elements are the matched arguments or a matched and
parsed block.

For full information on the keyword-argument system see Appendix A: Keyword-arguments
Specification in the document “The Official ETAC Programming Language”
(ETACProgLang(Official).pdf).

Example
The following illustration shows how the fGetKWArgs function can be used.

(1) fGetKWArgs("{//A(#a1)/k/C(x)}{/D($a2)/-e(#a3,?)}" "-ea,b C -e c" ?);

Example (1) returns true followed by the sequence
‹[["C", "x"], ["-e", "a", "b", "c"]]› as the second top stack object.

Additional Information
See Appendix A: Keyword-arguments Specification in the document “The Official ETAC
Programming Language” (ETACProgLang(Official).pdf). ♦
4.3.1.18 fGetKWSyntax

fGetKWSyntax
fGetKWSyntax tmpl sep  sntx-str @F_GET_KW_SYNTAX

tmpl A string stack object, or a string sequence.

sep A string stack object, or a null stack object (?).

sntx-str A string stack object.

Details
Gets the keyword-arguments syntax (sntx-str) of a keyword template (tmpl). sntx-str will contain a
string showing the user-friendly syntax based on tmpl.

tmpl and sep are as defined for the function fGetKWArgs, except that for sep (if it is a string) the
middle character must be a zero character (0), and the third character determines the character for
separating the options in the returned syntax (sntx-str). The default is effectively ‹,0\›, and indicated
by a null stack object (?) for sep. (Note that in ETAC, a backslash character in a double-quoted string
is represented as two backslashes or a backslash followed by a space.)

Example
The following illustration shows how the fGetKWSyntax function can be used.

(1) fGetKWSyntax("{//A(#a1)/k/C(x)}{/D($a2)/-e(#a3,?)}" "00|");

Example (1) returns the syntax string ‹<A a1|k|C> [D {a2}|-e a3, ...]›.

Additional Information
fGetKWArgs ♦

4.3.1.19 fGetMemSize

fGetMemSize
fGetMemSize mem  size @F_GET_MEM_SIZE

mem A memory stack object.

size An integer stack object.

Details
Returns (size) the byte size of the usable data in a memory stack object (mem). size could be a negative
integer representing the equivalent positive integer in two’s complement format. ♦
4.3.1.20 fGetStrU

fGetStrU
fGetStrU str offset len  out-str @F_GET_STR_U

str A string stack object.

offset A non-negative integer stack object.

len A non-negative integer stack object.

out-str A string stack object.

Details
Returns (out-str) the middle substring (offset, len) of a string (str). offset and len are in u-char
character units.

offset is a zero-based u-char character offset into str. If offset indicates a character beyond the last
u- char character of str, then an empty string will be returned by the function.

len is the maximum number of u-char characters to be obtained from str beginning at offset. If len
exceeds the remaining characters of str, then only the remaining characters are obtained. If len is zero,
then an empty string will be returned by the function.

out-str is a substring of str beginning at u-char character offset with u-char character length up to len.

Examples
The following illustrations show how the fGetStrU function can be used.

(1) fGetStrU("hello-ha" 5 1);
(2) fGetStrU("hello-ha" 6 4);
(3) fGetStrU("hello-ha" 8 4);
(4) fGetStrU("thumbs\#1F44D#up" 6 2);
(5) fGetStrU("thumbs\#1F44D#up" 7 2);

Example (1) returns the string ‹-›.

Example (2) returns the string ‹ha›.

Example (3) returns an empty string because offset is beyond the last character of str.

Example (4) returns the string equivalent of ‹\#1F44D#u›. Note that the Unicode supplementary plane
code point U+1F44D (Thumbs Up Sign) is internally represented as a surrogate pair, but is only one
u- char character wide. Because len (2) is the u-char character length, both w-chars (surrogate pairs)
of the character at offset 6 and the following character (u), are obtained.

Example (5) returns the string ‹up› because it begins at u-char character offset 7 of str. ♦

4.3.1.21 fGetWindowsDir

fGetWindowsDir
fGetWindowsDir  dir-str | ? @F_GET_WINDOWS_DIR

dir-str A string stack object.

Details
Get the full path of the system Windows directory (dir-str) or a null stack object (?) if that directory
could not be obtained. dir-str will typically contain ‹C:\Windows›.

Illegal UTF-16 characters (ie: unpaired Unicode surrogate code points) in dir-str will be replaced with
‘?’ (question mark). ♦
4.3.1.22 fHexToInt

fHexToInt
fHexToInt str  int | ? @F_HEX_TO_INT

str A string stack object.

int An integer stack object.

Details
Converts the first eight characters or less of a hexadecimal string (str) to an equivalent integer (int).

If str is an empty string then int will be zero. If str contains eight or less characters and not all of those
characters are hexadecimal text, then a null stack object will be returned. The hexadecimal text
characters are ‘0’ to ‘9’, ‘A’ to ‘F’, and ‘a’ to ‘f’.

Examples
The following illustrations show how the fHexToInt function can be used.

(1) fHexToInt("3A5f");
(2) fHexToInt("45fa8Bd2iy");

Example (1) returns 14943, which is equal to 3A5F16.

Example (2) returns 1174047698, which is equal to 45FA8BD216. ♦
4.3.1.23 fIndentLines

fIndentLines
fIndentLines str-seq num-pos pad eolchrs @F_INDENT_LINES

str-seq A string sequence.

num-pos A non-negative integer stack object.

pad A string stack object.

eolchrs A string stack object.

Details
Indents all text lines in a string sequence (str-seq) the specified number of positions (num-pos) filled
with the specified w-char character (pad). Indentation also applies to the sequence elements
containing specified EOL (end-of-line) characters (eolchrs).

An element of str-seq could contain more than one text line, each separated by the string in eolchrs.
For example, the string element "line 1\r\nline 2\r\nline 3" (ie:
‹line 1CRLFline 2CRLFline 3›) contains three text lines if eolchrs is "\r\n" (ie: CRLF).

str-seq will have each text line within each string element modified (indented) by this function.

num-pos is a non-negative integer indicating the number of positions to indent the text lines in str-seq.

pad is a string, but only the first character, which must be a UCS-2 (BMP Unicode scalar value)
character, is used to pad the indentation. pad will typically be a space character. If pad is an empty
string then no indentation will occur.

eolchrs is a string that separates text lines within str-seq. If each element of str-seq is a single text
line, then eolchrs should be an empty string.

Examples
The following illustrations show how the fIndentLines function can be used.

(1) Seq := ["First line", "line 1\nline 2\nline 3"];
fIndentLines(Seq 3 "*" "\n");

(2) Seq := ["First line", "line 1::line 2::line 3::"];
fIndentLines(Seq 3 "!" "::");

(3) Seq := ["\r\n\r\n"];
fIndentLines(Seq 3 " " "\r\n");

In example (1), Seq will end up containing the two elements ‹***First line› and
‹***line 1LF***line 2LF***line3›.

In example (2), Seq will end up containing the two elements ‹!!!First line› and ‹!!!
line 1::!!!line 2::!!!line3::!!!›.

In example (3), Seq will end up containing the single element ‹SPSPSPCRLFSPSPSPCRLFSPSPSP›, that is, three text
lines each containing three spaces. ♦
4.3.1.24 fIsFileWritable

fIsFileWritable
fIsFileWritable file-path  str @F_IS_FILE_WRITABLE

file-path A string stack object.

str A string stack object.

Details
Checks that a file at a specified file path (file-path) is writeable if it exists. Returns an error message
(str) if it is not writeable, otherwise returns an empty string.

If the file does not exist at the specified path, str will be an empty string. ♦
4.3.1.25 fIsOnlyDirPath

fIsOnlyDirPath
fIsOnlyDirPath path  bool @F_IS_ONLY_DIR_PATH

path A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a path specification (path) is a directory path only. If the last character of
path is a forward slash or backslash, the function returns true, otherwise it returns false. ♦

4.3.1.26 fIsOnlyFileName

fIsOnlyFileName
fIsOnlyFileName path  bool @F_IS_ONLY_FILE_NAME

path A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a file path specification (path) contains only a file name (and extension). If
the file name and extension part of path is equal to path, the function returns true, otherwise it returns
false. ♦
4.3.1.27 fIsRelativePath

fIsRelativePath
fIsRelativePath path  bool @F_IS_RELATIVE_PATH

path A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a file path specification (path) is a relative path. If path does not contain a
drive part and does not begin with a current directory symbol, ‹.› (dot), the function returns true,
otherwise it returns false.

Note that the current directory symbol, ‹.› (dot), is regarded as an absolute path. For example,
‹.\MyFile.txt› is regarded as an absolute path.

Examples
The following illustrations show how the fIsRelativePath function can be used.

(1) fIsRelativePath("MyPath\\MyFile.txt");
(2) fIsRelativePath('C:\MyPath\MyFile.txt');

Example (1) returns true, while example (2) returns false. ♦
4.3.1.28 fIsStrDblQuoted

fIsStrDblQuoted
fIsStrDblQuoted str  bool @F_IS_STR_DBL_QUOTED

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is delimited by double-quote characters ("). If the first and
last characters of str are double-quote characters (U+0022), then the function returns true, otherwise
it returns false. ♦

4.3.1.29 fIsStrDec

fIsStrDec
fIsStrDec str  bool @F_IS_STR_DEC

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is in the form of a decimal number (including exponential
notation). If str is of the form

[[{+}|-]digits].digits[(e|E)[{+}|-]digits] or
[{+}|-]digits(e|E)[{+}|-]digits,

where digits is one or more decimal digits, the function returns true, otherwise it returns false. ♦
4.3.1.30 fIsStrInt

fIsStrInt
fIsStrInt str  bool @F_IS_STR_INT

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is in the form of an integer. If str is of the form

[{+}|-]digits,
where digits is one or more decimal digits, the function returns true, otherwise it returns false. ♦
4.3.1.31 fIsStrNegInt

fIsStrNegInt
fIsStrNegInt str  bool @F_IS_STR_NEG_INT

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is in the form of a negative integer. If str is of the form

-digits,
where digits is one or more decimal digits, the function returns true, otherwise it returns false. Note
the minus sign before digits. ♦
4.3.1.32 fIsStrPosInt

fIsStrPosInt
fIsStrPosInt str  bool @F_IS_STR_POS_INT

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is in the form of a positive integer. If str is of the form

[{+}]digits,
where digits is one or more decimal digits, the function returns true, otherwise it returns false. Note
the optional plus sign before digits. ♦

4.3.1.33 fIsStrZeroInt

fIsStrZeroInt
fIsStrZeroInt str  bool @F_IS_STR_ZERO_INT

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) is in the form of a zero integer. If str is of the form

[+|-]digits,
where digits is one or more zero digits, the function returns true, otherwise it returns false. For
example, ‹-000› returns true. ♦
4.3.1.34 fLambda

fLambda
fLambda b-pars vars proc  fnt @F_LAMBDA

b-pars A string sequence.

vars A string sequence.

proc A procedure.

fnt An ETAC function.

Details
Creates a general lambda abstraction function for any predefined function or procedure. Lambda
functions in programming are (supposed to be) based on the mathematical lambda calculus, which
essentially involves mappings from mathematical expressions to other mathematical expressions.

The terms ‘bound parameter’ and ‘free parameter’ correspond to the terms ‘bound variable’ and ‘free
variable’, respectively, in lambda calculus. The terms ‘abstraction’ and ‘application’ also correspond
to similar terms in lambda calculus. To understand lambda functions in programming it is useful to
understand the essence of mathematical lambda calculus.

b-pars is a sequence of bound parameters of the returned abstraction function (fnt). The sequence
consists of quoted parameter names, for example ["pPar3", "pPar1"].

vars is a sequence of the remaining free parameters of the target function or procedure. The sequence
consists of quoted parameter names, for example ["pPar2", "pPar4"]. vars can be an empty
sequence.

proc is a procedure containing the call to the target function or procedure involving the parameters
specified in the first two sequences, for example {MyFnt(pPar1 pPar2 pPar3 pPar4);} or
{(+ pPar1 pPar3 pPar2 pPar4);}.

This function returns a lambda abstraction function (fnt) which is defined with the parameters
specified in b-pars in the given order. That returned function is later called with values that bind those
parameters, itself returning a function (a lambda application function) which is defined with the
parameters specified in vars (the free parameters) and with the parameters in b-pars already bound.

The lambda abstraction function returned by the call to ‹fLambda([b, ···] [f, ···] {…})› is
defined as being equivalent to ‹fnt:(b ···){@Localise(fnt:(f ···){…});}›. When that returned
function itself is called with the arguments that correspond to the bound parameters (b ···), it returns a
function defined as being equivalent to the localised function ‹fnt:(f ···){…}›. That last returned
function (the application function) is then called with arguments that correspond to the free
parameters (f ···). Note that fLambda is only a convenience for producing an abstraction function; an
abstraction function can be defined directly without creating it via fLambda.

NOTE that the bound parameters in the lambda abstraction function can be bound to any TAC object,
including functions, procedures, and operators, for an appropriately constructed proc value.

Examples
The following illustrations show how the fLambda function can be used.

(1) fLambda(["pPar3", "pPar1"] ["pPar2", "pPar4"] {MyFnt(pPar1 pPar3 pPar2
pPar4);});

(2) fLambda(["pConst"] ["pVar"] {(pConst + pVar);});
(3) fLambda(["pConst"] [] {("Statement: " + pConst);});
(4) Abstraction := fLambda(["pConst"] ["pVar"] {(pConst + pVar);});

Application := Abstraction(5);

Example (1) returns a function internally defined as ‹fnt:(pPar3 pPar1){@Localise(fnt:(pPar2
pPar4){MyFnt(pPar1 pPar3 pPar2 pPar4);});}›. The bound parameters are pPar3 and pPar1.
The free parameters are pPar2 and pPar4.

Example (2) returns a function internally defined as ‹fnt:(pConst){@Localise(fnt:(pVar)
{(pConst + pVar);});}›. The bound parameter is pConst. The free parameter is pVar.

Example (3) returns a function internally defined as ‹fnt:(pConst){@Localise(fnt:()
{("Statement: " + pConst);});}›. The bound parameter is pConst. There are no free
parameters.

In each of the three examples above, the returned function needs to be called with values for its bound
parameters; the call then returns another function with those parameters already bound. That other
function then needs to be called with values for the free parameters of the original lambda function.

In example (4), the function Abstraction contains the returned function mentioned in example (2),
where the bound parameter, pConst, is bound to 5 by the call Abstraction(5). Abstraction(5)
returns an application function assigned to Application. The function Application is equivalently
defined as ‹fnt:(pVar){(5 + pVar);}›, so Application(10) returns 15, and Application(3)
returns 8 (the arguments 10 and 3 are the values for the free parameter pVar).

In practice, fLambda is rarely used except in cases where many different instances of a particular
function need to be made with different values of the same subset of the parameters of that function.

Other Information
fLambdaApp ♦
4.3.1.35 fLambdaApp

fLambdaApp
fLambdaApp b-pars vars call  fnt @F_LAMBDA_APP

b-pars A string sequence.

vars A string sequence.

call A procedure.

fnt An ETAC function.

Details
Creates a general lambda application function for any predefined function or procedure. See the entry
fLambda before reading this entry.

b-pars is a sequence of bound parameters and values of the target function or procedure. The sequence
consists of pairs of quoted parameter names with their values, for example ‹["pPar3", 10,
"pPar1", "string"]› (pPar3 is to be bound to 10, and pPar1 is to be bound to "string").

vars is a sequence of the remaining free parameters of the target function or procedure. The sequence
consists of quoted parameter names, for example ‹["pPar2", "pPar4"]›. vars can be an empty
sequence.

call is a procedure containing the call to the target function or procedure involving the parameters
specified in the first two sequences, for example ‹{MyFnt(pPar1 pPar2 pPar3 pPar4);}› or
‹{(+ pPar1 pPar3 pPar2 pPar4);}›.

This function returns a lambda application function (fnt) which is defined with the parameters
specified in vars (the free parameters) and with the parameters in b-pars already bound.

The lambda application function returned by the call to ‹fLambdaApp([b, v, ···] [f, ···] {…})›
is defined as being equivalent to the localised function ‹fnt:(f ···){…}› with each parameter b
already bound to its corresponding argument v. That returned function (the application function) is
then called with arguments that correspond to the free parameters (f ···). Note that calling
‹fLambdaApp([b, v, ···] [f, ···] {…})› is equivalent to executing ‹@Call fLambda([b, ···]
[f, ···] {…}) v ···›. So, fLambdaApp is only a convenience for producing an application function
directly.

NOTE that the values of the bound parameters in b-pars can be any TAC object, including functions,
procedures, and operators, for an appropriately constructed call value.

Examples
The following illustrations show how the fLambdaApp function can be used.

(1) fLambdaApp(["pPar3", 10, "pPar1", "string"] ["pPar2", "pPar4"]
{MyFnt(pPar1 pPar2 pPar3 pPar4);});

(2) fLambdaApp(["pConst", 5] ["pVar"] {(pConst + pVar);});
(3) fLambdaApp(["pConst", "Statement: "] ["pVar"] {(pConst + pVar);});
(4) Application := fLambdaApp(["pConst", 5] ["pVar"] {(pConst + pVar);});
(5) Application := @Call fLambda(["pConst"] ["pVar"] {(pConst + pVar);}) 5;

Example (1) returns a function equivalently defined as ‹fnt:(pPar2 pPar4){MyFnt("string"
pPar2 10 pPar4);}›. The free parameters are pPar2 and pPar4.

Example (2) returns a function equivalently defined as ‹fnt:(pVar) {(5 + pVar);}›. The free
parameter is pVar.

Example (3) returns a function equivalently defined as ‹fnt:(pVar) {("Statement: " +
pVar);}›. The free parameter is pVar.

In each of the three examples above, the bound parameters of the returned function are already bound
to their corresponding values. That returned function then needs to be called with values for the free
parameters (vars) specified in the original fLambdaApp function call.

In examples (4) and (5), the function Application contains the same function as the returned function
defined at example (2), so Application(10) returns 15, and Application(3) returns 8 (the
arguments 10 and 3 are the values for the free parameter pVar).

fLambdaApp is typically used instead of fLambda when there needs to be only one instance of binding
the bound variables for a given target function or procedure (call).

Additional Information
fLambda ♦

4.3.1.36 fLinesToMem

fLinesToMem
fLinesToMem str-seq  mem @F_LINES_TO_MEM

str-seq A string sequence.

mem A memory stack object.

Details
Converts from a string sequence (str-seq) to a memory object (mem) with EOL characters.

str-seq is a string sequence, and each of its elements is appended to a new memory object (mem) with
the EOL (end-of-line) characters ‹CRLF›.

Example
The following illustration shows how the fLinesToMem function can be used.

(1) fLinesToMem(["Line 1", "Line 2", "Line 3"]);

Example (1) returns a memory object containing ‹Line 1CRLFLine 2CRLFLine3CRLF›. ♦
4.3.1.37 fLinesToStr

fLinesToStr
fLinesToStr str-seq  str @F_LINES_TO_STR

str-seq A string sequence.

str A string stack object.

Details
Converts from a string sequence (str-seq) to a string (str) with EOL characters.

str-seq is a string sequence, and each of its elements is appended to a string (str) with the EOL (end-of-
line) characters ‹CRLF›.

Example
The following illustration shows how the fLinesToStr function can be used.

(1) fLinesToStr(["Line 1", "Line 2", "Line 3"]);

Example (1) returns the string ‹Line 1CRLFLine 2CRLFLine3CRLF›. ♦
4.3.1.38 fMatchString

fMatchString
fMatchString pat str  bool @F_MATCH_STRING

pat A string stack object, or a string sequence.

str A string stack object.

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a string (str) matches a pattern string and possibly sub-patterns (pat).

pat is a pattern string or a sequence containing pattern strings which is\are matched by the whole of
str. The syntax for the strings in pat is as indicated under the heading Additional Information, except
that pat cannot contain blocks of the form ‹<n…>›, where n is an integer from 0 to 9.

If pat is a sequence, the second and subsequent elements of that sequence contain custom pattern
strings identified by the ‹<pr>› special characters in the elements of pat. The first custom pattern in
pat (the second element of pat) is custom pattern number 0 (ie: pattern represented by <p0>); the next
custom pattern in pat (the third element of pat) is custom pattern number 1 (ie: pattern represented by
<p1>), and so on.

Important Note

If pat or any element of it (if pat is a sequence) does not have a valid syntax, the consequence is
unpredictable. fMatchString does not cater for patterns with an invalid syntax.

str is the string to be matched against pat.

bool will be true if all of str matches pat, otherwise it will be false.

Examples
The following illustrations show how the fMatchString function can be used.

(1) fMatchString("%%{$?%%`d}%?" "there are 120 MINUTES in 2 HOURS");
(2) fMatchString(["%%{$?[{<p0>}{<p1>}]}%?", "%%`u", "%%`d"] "there are 120

MINUTES in 2 HOURS");

Example (1) returns true because the whole string (second argument) matches the pattern string (first
argument).

In example (2), <p0> represents the pattern ‹%%`u›, and <p1> represents the pattern ‹%%`d›. The
function returns true because the whole string (second argument) matches the sequence of pattern
strings (first argument).

Additional Information
See Pattern String Matching under chapter 3 of the “The Official ETAC Programming Language”
document, ETACProgLang(Official).pdf.

Other Information
fParseString ♦
4.3.1.39 fMemToHexChars

fMemToHexChars
fMemToHexChars offset len mem  str @F_MEM_TO_HEX_CHARS

offset An integer stack object.

len An integer stack object.

mem A memory stack object.

str A string stack object.

Details
Converts a specified portion (offset, len) of a memory object (mem) into a hexadecimal string (str).

offset is interpreted as a positive integer or zero indicating a zero-based byte offset into mem.

len is interpreted as a positive integer or zero indicating the amount of bytes relative to offset to
convert.

mem is the memory stack object. The content of mem remains unchanged.

str is a hexadecimal string representing the specified portion of memory, or an empty string if an error
occurs. The hexadecimal text characters are ‘0’ to ‘9’ and ‘A’ to ‘F’. Note that the hexadecimal
characters ‘a’ to ‘f’ will be in uppercase.

Note that offset plus len need not be within the bounds of the usable memory within mem.

Examples
The following illustrations show how the fMemToHexChars function can be used.

(1) fMemToHexChars(2 3 &0h0122033d4F09);
(2) fMemToHexChars(0 4 &0h012203);
(3) fMemToHexChars(20 4 &0h010203);

Example (1) returns the string ‹033D4F›.

Example (2) returns the string ‹012203›.

Example (3) returns an empty string because offset is outside the bounds of the usable memory within
mem. ♦
4.3.1.40 fMid

fMid
fMid str offset len  out-str @F_MID

str A string stack object.

offset A positive integer stack object.

len A positive integer stack object.

out-str A string stack object.

Details
Returns (out-str) the middle substring (offset, len) of a string (str). offset and len are in w-char
character units.

offset is a zero-based w-char character offset into str. If offset indicates a character beyond the last
character of str, then out-str will be an empty string.

len is the maximum number of w-char characters to be obtained from str beginning at offset. If len
exceeds the remaining characters of str, then only the remaining characters are obtained.

out-str is a substring of str beginning at w-char character offset with w-char character length up to len,
or is an empty string. Note that substring indicated by offset and len must be a well-formed Unicode
substring, otherwise an error event will occur.

Examples
The following illustrations show how the fMid function can be used.

(1) fMid("hello-ha" 5 1);
(2) fMid("hello-ha" 6 4);
(3) fMid("hello-ha" 8 4);
(4) fMid("thumbs\#1F44D#up" 6 2);
(5) fMid("thumbs\#1F44D#up" 7 2); [* An error event will occur. *]

Example (1) returns the string ‹-›.

Example (2) returns the string ‹ha›.

Example (3) returns a null stack object because offset is beyond the last character of str.

Example (4) returns the string equivalent of ‹\#1F44D#›. Note that the Unicode supplementary plane
code point U+1F44D (Thumbs Up Sign) is internally represented as a surrogate pair, and is two w-char

characters wide. Because len (2) is the w-char character length, both w-chars (surrogate pairs) of the
character at offset 6 are obtained, forming a well-formed Unicode substring.

In example (5), an error event occurs because the specified substring is not a well-formed Unicode
substring (the offset 7 indicates the second w-char of the surrogate pair of ‹\#1F44D#›). ♦
4.3.1.41 fParseString

fParseString
fParseString pat str  str-seq | ? @F_PARSE_STRING

pat A string stack object, or a string sequence.

str A string stack object.

str-seq A string sequence.

Details
Parses a string (str) based on a pattern string and possibly sub-patterns (pat), returning a string
sequence (str-seq) corresponding to the parsed substrings of the string (str).

pat is a pattern string or a sequence containing pattern strings which is\are matched by the whole of
str. Substrings within str matching ‘blocks’ within pat are captured into str-seq as strings. A block is
of the form ‹<n…>›, where n is either 0 (zero) or an integer from 1 to 9. Blocks can be nested. pat
can be an empty string, resulting in str-seq being an empty sequence. The syntax for the strings in pat
is as indicated under the heading Additional Information.

If pat is a sequence, the second and subsequent elements of that sequence contain custom pattern
strings identified by the ‹<pr>› special characters in the elements of pat. The first custom pattern in
pat (the second element of pat) is custom pattern number 0 (ie: pattern represented by <p0>); the next
custom pattern in pat (the third element of pat) is custom pattern number 1 (ie: pattern represented by
<p1>), and so on.

Important Note

If pat or any element of it (if pat is a sequence) does not have a valid syntax, the consequence is
unpredictable. fParseString does not cater for patterns with an invalid syntax.

str is the string to be parsed.

str-seq can be in either one of two formats. ‹<n…>› blocks are used in pat to produce the contents of
str-seq matching those blocks. Format 1: pat contains only ‹<0…>› blocks. In that case, str-seq will
be a flat string sequence. Format 2: pat contains only ‹<m…>› blocks, where m is an integer from 1 to
9, inclusive. In that case, str-seq will contain one level of string subsequences. Block m corresponds
to element m of str-seq (note that m cannot be 0 in this case). str-seq will contain as many elements as
the maximum block number in pat; omitted block numbers in pat will correspond to empty
subsequences in str-seq. If a ‹<m…>› block exists in pat but there are no matches for that block then
the corresponding subsequence in str-seq will be empty.

If the match fails completely, or no blocks exists in pat, then a null stack object (?) will be returned.

Examples
The following illustrations show how the fParseString function can be used.

(1) fParseString("%%{$?<0%%`d>}%?" "there are 120 MINUTES in 2 HOURS");
(2) fParseString(["%%{$?[{<p0>}{<p1>}]}%?", "<1%%`u>", "<3%%`d>"] "there are

120 MINUTES in 2 HOURS");

Example (1) obtains the strings of all runs of one or more digits. The function returns the sequence
‹["120", "2"]›.

Block 1 in the example (2) obtains the strings of all runs of one or more uppercase characters; block 2
does not exist so it corresponds to the empty sequence in str-seq; and block 3 obtains the strings of all
runs of one or more digits. <p0> represents the pattern <1%%`u>, and <p1> represents the pattern
<3%%`d>. The function returns the sequence ‹[["MINUTES", "HOURS"], [], ["120", "2"]]›
corresponding to the three blocks in pat.

Additional Information
See Pattern String Matching under chapter 3 of the “The Official ETAC Programming Language”
document, ETACProgLang(Official) . pdf.

Other Information
fMatchString ♦
4.3.1.42 fPathExists

fPathExists
fPathExists path type  bool @F_PATH_EXISTS

path A string stack object.

type An integer stack object, or a null stack object (?).

bool An integer stack object containing a logical boolean value.

Details
Determines (bool) whether a specified type of disk entity (type) exists for a path specification (path).

type can be any one of the following: :#FP_PATH_FILE: (the entity is a file), :#FP_PATH_DIR: (the
entity is a directory), :#FP_PATH_VOL: (the entity is a volume), or ? (the entity is a file or directory).

bool is true if path represents the entity specified by type, otherwise it is false. ♦
4.3.1.43 fPutStrU

fPutStrU
fPutStrU str offset len rep-str  out-str @F_PUT_STR_U

str A string stack object.

offset A non-negative integer stack object.

len A non-negative integer stack object.

rep-str A string stack object.

out-str A string stack object.

Details
Replaces a substring at a u-char character offset and length (offset, len) in a given string (str) with a
string (rep-str), returning the modified string (out-str).

offset is a zero-based u-char character offset into str. If offset indicates a character beyond the last
character of str, then out-str will be the same as str.

len is the maximum number of u-char characters to be replaced in str beginning at offset. If len
exceeds the remaining characters of str, then only the remaining characters are replaced.

rep-str is the string that replaces the substring indicated by offset and length.

out-str is the modified string after replacement.

Examples
The following illustrations show how the fPutStrU function can be used.

(1) fPutStrU("hello-ha" 5 1 " ");
(2) fPutStrU("hello-ha" 6 4 "*%");
(3) fPutStrU("hello-ha" 8 4 "*%");
(4) fPutStrU("hello-ha" 1 3 "");
(5) fPutStrU("thumbs\#1F44D#up" 6 2 "*");
(6) fPutStrU("thumbs\#1F44D#up" 7 2 "\#1F34F~green apple#**");

Example (1) returns the string ‹hello ha›.

Example (2) returns the string ‹hello-*%›.

Example (3) returns the string ‹hello-ha› because offset is beyond the last character of str.

Example (4) returns the string ‹ho-ha›.

Example (5) returns the string ‹thumbs*p›. Note that the Unicode supplementary plane code point
U+1F44D (Thumbs Up Sign) is internally represented as a surrogate pair, but is only one u-char
character wide. Because len (2) is the u-char character length, both w-chars (surrogate pairs) of the
character at offset 6, and the following character (u), are replaced.

Example (6) returns the equivalent of the string ‹thumbs\#1F44D#\#1F34F#**› because the substring
being replaced begins at u-char character offset 7. Note that the text ‹~green apple› is ignored by
ETAC (such text is an example of an “in-string comment”). ♦
4.3.1.44 fQuickSort

fQuickSort
fQuickSort seq lo-idx hi-idx @F_QUICK_SORT

seq A sequence.

lo-idx A integer stack object.

hi-idx A integer stack object.

Details
Sorts a sequence (seq) in place between elements at indices lo-idx and hi-idx using the “quick sort”
algorithm. The elements of seq must be comparable. The order of the elements of seq may be
modified by this function.

If lo-idx or hi-idx is out of range, then it is clipped to a value within the index range of seq.

To sort the text lines in descending order, call the ETAC command rev_seq with seq as the argument
after fQuickSort has been called.

Note that the function fSortSeq is generally more efficient than this one for an initially nearly sorted
sequence.

Examples
The following illustrations show how the fQuickSort function can be used.

(1) Seq := ["morning", "afternoon", "evening"]; fQuickSort(Seq 1 3);
(2) Seq := ["morning", "afternoon", "evening"]; fQuickSort(Seq 1 |Seq|);

void rev_seq Seq;
(3) Seq := fReadTextLines("MyTextFile.txt"); fQuickSort(Seq 5 10);

Example (1) sorts the text elements in the sequence Seq in ascending order, resulting in the same
sequence having been modified to ‹["afternoon", "evening", "morning"]›.

Example (2) sorts the text elements in the sequence Seq in descending order, resulting in the same
sequence having been modified to ‹["morning", "evening", "afternoon"]›.

Example (3) assumes that the specified file exists, and sorts the order of the text lines at indices 5 to
10 of an internal copy of that file, returning the sorted lines in Seq. Note that, in this example, the
fReadTextLines function returns a string sequence containing the data of the specified file.

Other Information
fSortSeq ♦
4.3.1.45 fReadTextLines

fReadTextLines
fReadTextLines file-path  str-seq | ? @F_READ_TEXT_LINES

file-path A string stack object.

str-seq A string sequence.

Details
Reads the text lines of a text file (file-path) into a string sequence (str-seq).

The text file specified by file-path can contain UTF-8, UTF-16, UTF-32, or Windows-1252 text lines
delimited by the EOL characters CRLF, CR, or LF. str-seq will not include the EOL characters.

If the file cannot be interpreted as a text file, then this function returns a null stack object (?). If the
file does not exist, or is unreadable, then an error event occurs. ♦
4.3.1.46 fRemQuotes

fRemQuotes
fRemQuotes in-str  out-str @F_REM_QUOTES

in-str A string stack object.

out-str A string stack object.

Details
Trims a string (in-str) by removing leading and trailing single or double quotes and then spaces,
leaving the result (out-str) on the object stack.

in-str is a string that may contain leading and\or trailing single-quote (‘'’ U+0027) or double-quote
(‘"’ U+0022) characters. Those characters are removed first, then leading and trailing spaces
(U+0020) are removed next.

out-str is the same as in-str but with the said characters removed.

Examples
The following illustrations show how the fRemQuotes function can be used.

(1) fRemQuotes("\"text str\"");
(2) fRemQuotes("'\"text str'\"");
(3) fRemQuotes("' text str' ");
(4) fRemQuotes(" text str ' ");
(5) fRemQuotes(" text str '");
(6) fRemQuotes("' 'text str ' '");

In example (1), the input string is ‹"text str"›, and the function returns ‹text str›.

In example (2), the input string is ‹'"text str'"›, and the function returns ‹text str›.

In example (3), the input string is ‹' text str' ›, and the function returns ‹text str'›.

In example (4), the input string is ‹ text str ' ›, and the function returns ‹text str '›.

In example (5), the input string is ‹ text str '›, and the function returns ‹text str›.

In example (6), the input string is ‹' 'text str ' '›, and the function returns ‹'text str '›. ♦
4.3.1.47 fRepeatStr

fRepeatStr
fRepeatStr str len  out-str @F_REPEAT_STR

str A string stack object.

len A non-zero integer stack object.

out-str A string stack object.

Details
Creates a string consisting of a given string (str) repeated a specified number (len) of times.

If len is zero, out-str will be an empty string.

Example
The following illustration shows how the fRepeatStr function can be used.

(1) fRepeatStr("string " 3);

Example (1) returns the string ‹string string string ›. ♦
4.3.1.48 fReplSubStr

fReplSubStr
fReplSubStr pat repl-str in-str  out-str @F_REPL_SUB_STR

pat A string stack object, or a string sequence.

repl-str A string stack object, or a string sequence.

in-str A string stack object.

out-str A string stack object.

Details
Replaces all substrings of a string (in-str) that match a pattern string or a sequence containing pattern
strings (pat) with a specified string or strings (repl-str). Only the parts of in-str that match the zero-
blocks (<0...>) of pat are replaced.

pat is a pattern string or a sequence containing pattern strings, but must not contain any <n...> blocks
where n is greater than 0. If the strings in pat do not contain any blocks then those strings are assumed
to be contained within a single zero-block (ie: <0...>). There can be more than one zero-block in pat
but they must not be nested. If pat is a sequence, then the first element of that sequence is the main
pattern string, the other elements are custom pattern strings beginning with custom pattern 0. The
syntax for the strings in pat is as indicated under the heading Additional Information, except that
those strings can contain only <0...> blocks (or no blocks).

Important Note

If pat or any element of it (if pat is a sequence) does not have a valid syntax, the consequence is
unpredictable. fReplSubStr does not cater for patterns with an invalid syntax.

A match occurs when at least one substring of in-str matches pat. If no match occurs, out-str will be
the same as in-str, otherwise, out-str will be in-str with the appropriate substrings matching the zero-
blocks in pat replaced with repl-str. If repl-str is a string then it will replace all matching substrings.

If repl-str is a sequence, then the strings in it must correspond to at least the number of matching
substrings. Substrings in in-str matching the zero-blocks in pat are replaced with the corresponding
strings in repl-str in the order in which the substrings occur from left to right.

Examples
The following illustrations show how the fReplSubStr function can be used.

(1) fReplSubStr("NUM:<0%%`d>" "10" "abcdNUM:24efgNUM:3hijNUM:40");
(2) fReplSubStr("NUM:<0%%`d>" ["7", "66", "204"]

"abcdNUM:24efgNUM:3hijNUM:40");
(3) fReplSubStr("three" "four" "three people dug three holes");

Example (1) illustrates how fReplSubStr works when repl-str is a string ("10"). The first argument,
pat, is matched by three substrings of the third argument, in-str. The three matching substrings are:
‹NUM:24›, ‹NUM:3›, ‹NUM:40›. The number in each of those substrings matches the zero-block,
<0%%`d>, of pat. The second argument, repl-str, therefore replaces those numbers. That is to say, the
second argument replaces those substrings matching the zero-block. In this case, the said numbers are
replaced with 10, the second argument. The function, therefore, returns the string
‹abcdNUM:10efgNUM:10hijNUM:10›.

Example (2) is the same as example (1), except that the second argument, repl-str, is a sequence of
three strings that correspond to the three matched numbers mentioned in example (1). Those three
numbers, therefore, are replaced by the corresponding three strings in repl-str. The function returns
the string ‹abcdNUM:7efgNUM:66hijNUM:204›.

Note that the number of elements of repl-str must be at least the same as the number of substrings
matching the zero-blocks, otherwise an ETAC error event will occur. In some cases, the number of
matching strings may not be known in advanced, so repl-str should be a sequence only when that
number can be predicted.

The function in example (3) returns the string ‹four people dug four holes›, because the first
argument, pat, is equivalent to ‹<0three>› since it does not contain a zero-block.

Additional Information
See Pattern String Matching under chapter 3 of the “The Official ETAC Programming Language”
document, ETACProgLang(Official) . pdf. ♦
4.3.1.49 fRunETACFile

fRunETACFile
fRunETACFile etac-code arg-str  rtn-cde @F_RUN_ETAC_FILE

etac-code A string or memory stack object.

arg-str A string stack object.

rtn-cde An integer stack object.

Details
Runs an ETAC (or TAC) file (etac-code) with an argument string (arg-str) as it would be run from
RunETAC.exe.

etac-code is either a file path specification to an ETAC code file to run, or a memory stack object
containing the ETAC code. The ETAC code is such that it would normally be run from RunETAC.exe,
so it therefore expects a string parameter (arg-str) on the TAC stack.

arg-str is the string argument for the ETAC code specified by etac-code.

If an ETAC error event occurs while the ETAC code is executing, this function returns the TAC error
code (rtn-cde) for that error event, otherwise the function returns :#TAC_RTN_SUCCESS:.

If rtn-cde is not :#TAC_RTN_SUCCESS:, then the TAC object stack is restored to the same condition
that it was before the ETAC code was executed. If rtn-code is :#TAC_RTN_SUCCESS:, then the object
stack is not restored. This allows the ETAC code to return stack objects on the object stack if so
designed.

This function pulls off and saves the dictionaries that are on the TAC dictionary stack, except for a
replicate of the “Main” dictionary, before the ETAC code is run. After the ETAC code has completed,
the saved dictionaries are restored. It is necessary for the function to save and restore the dictionaries
on the dictionary stack to simulate running the ETAC code from RunETAC.exe, otherwise if the current
dictionaries are left on the dictionary stack, the executing ETAC code could modify them causing
unpredictable behaviour after it has completed. Also, the running ETAC code could itself behave
unpredictable if it links into the dictionaries existing before the call.

Examples
The following illustrations show how the fRunETACFile function can be used.

(1) void fRunETACFile("MyDir\\ShowFile.btac" "InfoFile.txt");
(2) FileData @= &1; FileData += "…"; Rtn := fRunETACFile(FileData "");
(3) Rtn := fRunETACFile((@ &1 + "…") "");

Example (1) executes ShowFile.btac directly.

Example (2) creates a memory stack object, initialises it with ETAC text script (indicated by the
ellipsis), then executes the ETAC text script directly from that memory stack object. The ETAC text
script is such as would be capable of being run via RunETAC.exe.

Example (3) is a more concise way of writing the code in example (2).

Other Information
fExecETACStr ♦
4.3.1.50 fShowBusy

fShowBusy
fShowBusy show @F_SHOW_BUSY

show An integer stack object containing a logical boolean value.

Details
Shows or hides (show) a busy message: “Processing Request”. The function shows only a dialog box
caption containing the message.

This function can be nested. If show is true, then the busy message appears; if show is false then an
existing busy message is dismissed if the function was called with true the same number of times that
it was called with false. ♦
4.3.1.51 fSortSeq

fSortSeq
fSortSeq in-seq1  in-seq2 @F_SORT_SEQ

in-seq1 A string sequence.

in-seq2 The modified string sequence in-seq1.

Details
Sorts the elements of a string sequence (in-seq1) returning the same string sequence (in-seq2) with the
text lines in ascending order.

This function uses the “insertion sort” algorithm, and is efficient for an initially nearly sorted
sequence.

To sort the text lines in descending order, call the ETAC command rev_seq with the returned value of
this function as the argument.

Examples
The following illustrations show how the fSortSeq function can be used.

(1) Seq := ["morning", "afternoon", "evening"]; void fSortSeq(Seq);
(2) Seq := ["morning", "afternoon", "evening"]; void rev_seq fSortSeq(Seq);
(3) RtnSeq := fSortSeq(fReadTextLines("MyTextFile.txt"));

Example (1) sorts the text elements in the sequence Seq in ascending order, resulting in the same
sequence having been modified to ‹["afternoon", "evening", "morning"]›.

Example (2) sorts the text elements in the sequence Seq in descending order, resulting in the same
sequence having been modified to ‹["morning", "evening", "afternoon"]›.

Example (3) assumes that the specified file exists, and sorts the order of the text lines of an internal
copy of that file, returning the sorted lines in RtnSeq. Note that, in this example, the
fReadTextLines function returns a string sequence containing the data of the specified file.

Other Information
fQuickSort ♦
4.3.1.52 fStrInSeq

fStrInSeq
fStrInSeq str-seq substr  idx @F_STR_IN_SEQ

str-seq A string sequence.

substr A string stack object.

idx A non-zero integer object.

Details
Returns the index (idx) of the first occurrence of a substring (substr) existing in a string sequence (str-
seq). The search is case-sensitive.

idx is the index of the first string in the sequence str-seq that contains the substring substr. idx is 0 if
no substring is found.

Example
The following illustration shows how the fStrInSeq function can be used.

(1) fStrInSeq(["good morning", "good afternoon", "good evening"] "after");

Example (1) returns the value 2 on the object stack. ♦

4.3.1.53 fStrToLines

fStrToLines
fStrToLines str eolchrs  str-seq @F_STR_TO_LINES

str A string stack object.

eolchrs A string stack object.

str-seq A string sequence.

Details
Converts from a string (str) containing text lines separated by EOL (end-of-line) characters (eolchrs) to
a sequence of text lines (str-seq) without the EOLs.

str is a string that typically contains text lines separated by the string in eolchrs.

eolchrs is a pattern string that indicates how the text lines within str are separated. For example, the
string "line 1\r\nline 2\r\nline 3" (ie: ‹line 1CRLFline 2CRLFline 3›) contains three text
lines if eolchrs is "\r\n" (ie: CRLF). Note that eolchrs can be ‹"[{\r\n}\r\n]"› which checks for CRLF,
CR, and LF EOL characters.

str-seq is a sequence containing the separate text lines within str, but without the EOL characters. If
str is an empty string, then str-seq will be an empty sequence. If eolchrs is an empty string, then str-
seq will contain the single element str if str is not an empty string.

This function is typically used to extract a sequence of text lines from a text file, as in the following
example:

fStrToLines(mem_to_str read_file "MyTextFile.txt" "\r\n");

Examples
The following illustrations show how the fStrToLines function can be used.

(1) fStrToLines("line 1line 2line 3" "");
(2) fStrToLines("line 1line 2line 3" "\r\n");
(3) fStrToLines("" "");
(4) fStrToLines("" "\r\n");
(5) fStrToLines("line 1\r\nline 2\r\nline 3" "\r\n");
(6) fStrToLines("line 1:line 2:line 3:" ":");
(7) fStrToLines("line 1\rline 2\r\nline 3" "[{\r\n}\r\n]");

Examples (1) and (2) return a sequence with a single string which is the same as the first argument to
the function (ie: ‹["line 1line 2line 3"]›).

Examples (3) and (4) return an empty sequence because the first argument is an empty string.

Examples (5) to (7) return the sequence ‹["line 1", "line 2", "line 3"]›.

Other Information
fLinesToStr ▪ fReadTextLines ♦

4.3.1.54 fToBinStr

fToBinStr
fToBinStr num size  str @F_TO_BIN_STR

num An integer stack object.

size An integer stack object.

str A string stack object.

Details
Converts an integer (num) to a binary string (str) of specified size (size). The binary string will consist
of 0’s and 1’s.

num is the integer desired to be represented as a two’s complement binary string. num may be a
negative integer.

size is the desired number of binary digit characters to be contained in str. If size is smaller than the
total number of binary digits, then the most significant binary digit characters beyond size digits will
be truncated. If size is greater than the total number of binary digits, then the extra digit characters
will be leading zeros. If size is zero then str will be an empty string. If size is negative, then str will
be the full conversion of num without leading zeros.

str is a string containing a series of binary digit characters, ‘0’ and ‘1’. str will represent the binary
equivalent of num with size least significant binary digits.

Examples
The following illustrations show how the fToBinStr function can be used.

(1) fToBinStr(25 5);
(2) fToBinStr(25 -1);
(3) fToBinStr(25 2);
(4) fToBinStr(25 10);
(5) fToBinStr(-1 -1);

Examples (1) and (2) return the string ‹11001›. This is the full conversion of 25 to binary.

Example (3) returns the string ‹01›. Notice that the string contains only 2 least significant digits of
‹11001›.

Example (4) returns the string ‹0000011001›. The leading zeros may be truncated if desired via the
ETAC command trim_str.

Example (5) returns the string ‹11111111111111111111111111111111› (32 ones). ♦
4.3.1.55 fToBoolStr

fToBoolStr
fToBoolStr bool  str @F_TO_BOOL_STR

bool An integer stack object.

str A string stack object.

Details
Converts a boolean value (bool) to a string (str) representing that value.

bool is an integer where non-zero represents true, and zero represents false.

str will contain the text ‹true› if bool is non-zero, otherwise it will contain the text ‹false›. ♦

4.3.1.56 fToHexStr

fToHexStr
fToHexStr num size  str @F_TO_HEX_STR

num An integer stack object.

size An integer stack object.

str A string stack object.

Details
Converts an integer (num) to a hexadecimal string of specified size (size).

num is the integer desired to be represented as a two’s complement hexadecimal string. num may be a
negative integer.

size is the desired number of hexadecimal digit characters to be contained in str. If size is smaller than
the total number of hexadecimal digits, then the most significant hexadecimal digit characters beyond
size digits will be truncated. If size is greater than the total number of hexadecimal digits, then the
extra digit characters will be leading zeros. If size is zero then str will be an empty string. If size is
negative, then str will be the full conversion of num without leading zeros.

str is a string containing a series of hexadecimal digit characters, ‘0’ to ‘9’ and ‘A’ to ‘F’ (note that the
hexadecimal characters ‘a’ to ‘f’ will be in uppercase). str will represent the hexadecimal equivalent
of num with size least significant hexadecimal digits.

Examples
The following illustrations show how the fToHexStr function can be used.

(1) fToHexStr(251384 5);
(2) fToHexStr(251384 -1);
(3) fToHexStr(251384 2);
(4) fToHexStr(251384 10);
(5) fToHexStr(-1 4);

Examples (1) and (2) return the string ‹3D5F8›. This is the full conversion of 251384 to hexadecimal.

Example (3) returns the string ‹F8›. Notice that the string contains only 2 least significant digits of
3D5F8.

Example (4) returns the string ‹000003D5F8›. The leading zeros may be truncated if desired via the
ETAC command trim_str.

Example (5) returns the string ‹FFFF›. ♦
4.3.1.57 fToWinCC

fToWinCC
fToWinCC str  wcc | ? @F_TO_WIN_CC

str A string stack object.

wcc An integer stack object.

Details
Converts the first w-char character in a string (str) to its Windows-1252 character code (wcc). Returns
the character code as an integer.

The first character of str must be a UCS-2 (BMP Unicode scalar value) character, otherwise the
consequence is undefined. An empty string for str will result in zero being returned. If the conversion
cannot be made, then a null stack object (?) will be returned.

wcc will be less than 256.

Examples
The following illustrations show how the fToWinCC function can be used.

(1) fToWinCC("");
(2) fToWinCC("hello");
(3) fToWinCC("‡"); [* Unicode U+2021. *]
(4) fToWinCC("?");
(5) fGetStrU("אalef"); [* First character: Unicode U+05D0. *]

Example (1) returns 0.

Example (2) returns 104 (for ‘h’).

Example (3) returns 135 (for Windows-1252 ‘‡’).

Example (4) returns 63 (for ‘?’).

Example (5) returns a null stack object (?) because the first character of the input string is not a
member of the Windows-1252 character set. ♦
4.3.1.58 fTrimQuotes

fTrimQuotes
fTrimQuotes str  out-str @F_TRIM_QUOTES

str A string stack object.

out-str A string stack object.

Details
Removes single and double quotes from only the ends of a string (str).

out-str is the same as str but with the outer single (‘'’ U+0027) or double (‘"’ U+0022) quote
characters removed. If str does not contain the same single or double quotes at both ends, then out-str
will be the same as str.

Examples
The following illustrations show how the fTrimQuotes function can be used.

(1) fTrimQuotes("");
(2) fTrimQuotes("hello");
(3) fTrimQuotes("' hello'");
(4) fTrimQuotes(' "hello"');
(5) fTrimQuotes('"');
(6) fTrimQuotes("\"hello'");

Example (1) returns an empty string.

Example (2) returns the string ‹hello›.

Example (3) returns the string ‹ hello›.

Example (4) returns the string ‹ "hello"›.

Example (5) returns the string ‹"›.

Example (6) returns the string ‹"hello'› because the end quotes are not the same. ♦
4.3.1.59 fTrimStrWS

fTrimStrWS
fTrimStrWS str  out-str @F_TRIM_STR_WS

str A string stack object.

out-str A string stack object.

Details
Trims a string (str) by removing leading and trailing white-spaces, and replacing inner EOL and TAB
character sequences with a single space.

str is the string to be modified.

out-str will be the same as str but with leading and trailing whitespaces (WS) removed, and inner TAB
(916) and EOL (CR and LF) character sequences replaced with a single space.

Example
The following illustration shows how the fTrimStrWS function can be used.

(1) fTrimStrWS("\n\t \v\rThis string\v\r\r\n contains\t\n\fwhitespaces \f\r");

Example (1) returns the equivalent of the string ‹This string\vSP containsSP\fwhitespaces›.
Within the string, both ‹\r\r\n› and ‹\t\n› have each been replaced by a single space (shown as SP). ♦
4.3.1.60 fWriteFile

fWriteFile
fWriteFile file-path file-data backup  str @F_WRITE_FILE

file-path A string stack object.

file-data A memory stack object.

backup An integer stack object containing a logical boolean value.

str A string stack object.

Details
Writes data (file-data) to the specified file (file-path) after creating a backup if specified (backup). No
action occurs other than an error message in str if the file is not writable.

If file-data contains Unicode text whose characters are all a subset of the Windows-1252 character set,
then the written file will be a Windows-1252 file.

If backup is true, and the file to be written already exists on disk, a backup of that disk file is made
before the specified file is written. If file.ext is the format of file name specified in file-path, then the
backup file name will be file~backup.ext. If the backup file already exists then it will be overwritten
automatically without warning.

If the specified file could not be written to, a temporary file (of the form ‹TMPxxxxx.tmp› where x is a
digit) containing file-data may remain.

str will be an empty string if successful, otherwise it will be an error message.

If file-data is required to be written in a data form other than the one specified internally, then the
following technique can be used. In the illustration below, if the characters in FileData are not all a
subset of the Windows-1252 character set, the data is temporarily converted to UTF-8 with a BOM
before being written; the original data in FileData remains unmodified.

Msg := fWriteFile(Path to_utf8 :!MO_BOM: FileData Backup);

In the example above, to_utf8 is an ETAC command that converts a memory object (or a string) to
the UTF-8 format if possible. :!MO_BOM: writes the data with a BOM signature (if a BOM signature is
not desired, :!MO_BOM: is omitted). Other similar commands to to_utf8 are to_utf16 and
to_utf32. Note that if all the characters in FileData are a subset of the Windows-1252 character
set, the data is written as a Windows-1252 file (single-byte characters) rather than as a UTF-8 file. If
the data in FileData cannot be converted to UTF-8 format, then the data is written as given (without a
BOM signature). ♦

Bibliography

Bibliography

The Official ETAC Programming Language copyright © Victor Vella (2020).

Glossary

Glossary

D
data object

The container of an ETAC dictionary used as a programmer-defined data structure consisting of
stack objects identified by name. The dictionary itself is identified by the name defined by the
private pre-processor definition ‹_DATA_DICT›.

E
error event

The situation that occurs when the action of an active stack object can no longer proceed. In such
a case, the ETAC interpreter intercepts the action and takes appropriate action which typically
consists of ending the main ETAC session, unless the error event is trapped by appropriate ETAC
code.

ESL function identifier
The pre-processor definition name identifying an ETAC function within an ETAC script library.
An ESL function identifier is specified by the programmer to include the corresponding ETAC
function definition into ETAC text script.

ETAC function
The container of a special ETAC created procedure that creates a local dictionary then assigns the
object stack arguments to that dictionary before calling the programmer-defined procedure.

ETAC script library
An ETAC text script file containing ETAC function definitions designed in such a way that the
same required function is allocated only once within a main ETAC session.

ETAC session
The period devoted to the processing of ETAC code by the TAC processor after having been
processed by the interpretation part of the ETAC interpreter. New ETAC sessions can exist within
a given ETAC session for different ETAC code. Therefore, a given ETAC session can produce a
new ETAC session (relating to different ETAC code from the given ETAC session) so that when the
new ETAC session ends, the given ETAC session resumes.

ETAC text script
ETAC program code that is in human readable and writable text form. A file containing only
ETAC text script typically has an extension of ‘etac’. Note that the term “ETAC text script” is
used in the same sense as the word “code”, as in “ETAC text script code”.

M
main ETAC session

An ETAC session and all other new ETAC sessions produced directly or indirectly from that ETAC
session, but not itself produced from any other ETAC session. A main ETAC session is typically
begun via the RunETAC.exe and the AppETAC.dll computer programs.

P
pattern string

A pattern string is a string which is composed of characters to be matched literally and special
characters that indicate predefined patterns to be matched or used to indicated how the pattern
matching process is to be performed. Pattern strings are unique to, and defined by, the ETAC™
programming language. Pattern strings are analogous to “regular expressions” in other
programming languages.

See Pattern String Matching under chapter 3 of the “The Official ETAC Programming Language”
document, ETACProgLang(Official).pdf, for more information including the syntax of a pattern string.

U
u-char

A Unicode scalar value. A u-char is equivalent to a UTF-32 code unit. The size of a u-char in an
ETAC string is two or four bytes (one or two w-chars, respectively). However, a u-char size as a
character is considered to be one unit in length. Note that a surrogate pair is one u-char (even
though it is two w-chars). A surrogate code point is not a u-char (it is a w-char).

W
w-char

A Unicode code point in the BMP (Basic Multilingual Plane). A w-char is equivalent to a UTF-16
code unit. The size of a w-char in an ETAC string is two bytes. However, a w-char size as a
character is considered to be one unit in length. Note that a surrogate code point is one w-char.

	Quick Reference
	Contents
	Document Conventions
	1. Introduction
	2. Features of an ETAC Script Library
	3. Using an ETAC Script Library
	4. Functions ETAC Script Library Reference
	4.1 Functions by Category
	4.2 Function Summary
	4.3 Function Definitions
	4.3.1.1 fAlignVal
	4.3.1.2 fBlotStrChars
	4.3.1.3 fCaptureComments
	4.3.1.4 fCaptureQuotes
	4.3.1.5 fCeil
	4.3.1.6 fCharToCP
	4.3.1.7 fCPToChar
	4.3.1.8 fCreateFile
	4.3.1.9 fCvtRelativePath
	4.3.1.10 fDateTimeFormatted
	4.3.1.11 fDelDuplStrs
	4.3.1.12 fExecETACStr
	4.3.1.13 fExtractInnerStr
	4.3.1.14 fFloor
	4.3.1.15 fFormatStr
	4.3.1.16 fFromWinCC
	4.3.1.17 fGetKWArgs
	4.3.1.18 fGetKWSyntax
	4.3.1.19 fGetMemSize
	4.3.1.20 fGetStrU
	4.3.1.21 fGetWindowsDir
	4.3.1.22 fHexToInt
	4.3.1.23 fIndentLines
	4.3.1.24 fIsFileWritable
	4.3.1.25 fIsOnlyDirPath
	4.3.1.26 fIsOnlyFileName
	4.3.1.27 fIsRelativePath
	4.3.1.28 fIsStrDblQuoted
	4.3.1.29 fIsStrDec
	4.3.1.30 fIsStrInt
	4.3.1.31 fIsStrNegInt
	4.3.1.32 fIsStrPosInt
	4.3.1.33 fIsStrZeroInt
	4.3.1.34 fLambda
	4.3.1.35 fLambdaApp
	4.3.1.36 fLinesToMem
	4.3.1.37 fLinesToStr
	4.3.1.38 fMatchString
	4.3.1.39 fMemToHexChars
	4.3.1.40 fMid
	4.3.1.41 fParseString
	4.3.1.42 fPathExists
	4.3.1.43 fPutStrU
	4.3.1.44 fQuickSort
	4.3.1.45 fReadTextLines
	4.3.1.46 fRemQuotes
	4.3.1.47 fRepeatStr
	4.3.1.48 fReplSubStr
	4.3.1.49 fRunETACFile
	4.3.1.50 fShowBusy
	4.3.1.51 fSortSeq
	4.3.1.52 fStrInSeq
	4.3.1.53 fStrToLines
	4.3.1.54 fToBinStr
	4.3.1.55 fToBoolStr
	4.3.1.56 fToHexStr
	4.3.1.57 fToWinCC
	4.3.1.58 fTrimQuotes
	4.3.1.59 fTrimStrWS
	4.3.1.60 fWriteFile

	Bibliography
	Glossary

