Data Control Model

Legal Information

ETAC and T (the ETAC logo) are an unregistered trademarks (™) of Victor Vella for computer
software incorporating an implementation of a computer programming language .

UML is a registered trademark (®) of the Object Management Group, Inc.

The author of this document shall not be liable for any direct or indirect consequences arising
with respect to the use of all or any part of the information in this document, even if such
information is inaccurate or in error. The information in this document is subject to change
without notice.

Data Control Model

Victor Vella

Published by Victor Vella
(13 February 2025)

First Published: 13 February 2025 (Australian English)

Copyright © Victor Vella (2025). All rights reserved.

Permission is hereby granted to make any number of exact electronic copies of this
document without any remuneration whatsoever. Permission is also granted to make
annotated electronic copies of this document for personal use only. Except for the
permissions granted, and apart from any fair dealing as permitted under the relevant
Copyright Act, no part of this document may be reproduced or transmitted in any form
or by any means without the express permission of the author. The copyright of this
document shall remain entirely with the original copyright holder.

Preface

I invented the data control model and corresponding data control diagrams in draft form in the
year 1997 for a specialised complex multi-tasking real-time system that I was designing in a work
place. However, I needed a means of representing the system visually from which I could design
the software. At the time, I was unfamiliar with (or possibly never heard of) UML® diagrams
(which were almost useless anyway).

My conceptual thinking about software systems consisted of instructions executing in a sequence,
changing data as they execute. The execution of the instructions involved the concept of current
execution control. I conceptualised the objects in the system as data with code (as in OOP).
Therefore the execution control could move from one object to another, perhaps taking some data
with it, then returning, perhaps with some data, to continue with the next instruction.

I quickly realised that all that I required to fully describe a software system is a sequence of data
changes in that system. Therefore, I conceptually eliminated the instructions themselves (coding)
and retained only the data changes of the system. But, I also retained the concept of execution
control (as a control point) to indicate the order and location of the data changes. Thus, the
concept of the data control model of a system was born — an entirely original work.

I developed some graphic symbols for the idea, enabling me to design the said real-time system.
Years later, for publication (this one), I developed the data control model system in a more formal
fashion, which I had previously used extensively, with great success, for developing the ETAC™
interpreter. [also used the data control model and diagrams for many other personal software
projects to design and maintain the software.

Victor Vella

Perth, Western Australia
13 February 2025

Contents

PO AC e ciieieeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeessnnnnes \'%
CONEENLS ccueeeciieeeeeeeeccieeeeeesseeeeseeeesessssssesesesssens vi
DOCUMENTE CONVENEIONS. ..ceueeeeiiiirreereeecieeeereessseeseseessons viii
I T OAUCH OMN e eeeeeeeeeeeecceereeeeeeeseeeeseeeeesesssnssssssses 1
T Data CONtrol MOAeEL.......eeeeeeeeeeeeeeeeeeeeeeessssssssssssssssessse 3
1.1 Data Control MOAE] D e inItION ... e e e e eeeeennns 3
1.2 DIOIMIAIIIS .ottt ettt et et et e e et eeeaeaeea e aeeeenannnans 3
1.2.1 DAA DIOMMIAIIN ettt et e e e et ee e aaeaeeeeeranannas 4
1.2.2 NO-Wait DIVIAer DOmMaiN....coooiiiiiiiiiieie e 4
1.2.3 WALt DIVIAET DOMIAIN ... e e e et e e e e e e e e e e e e e aeeeeeeaeeeeaeaeaee 5
1.2.4 Linked-wait Divider DOmMAIm . .. e e et e e e e e e eeaneeseeeeeennns 5
1.2.5 WATE DIOITIAIN . ettt ee e aeeeeaaeeeenaeeeeaaaaaes 5
1.2.6 BILOCK DOIMAIN . ceitiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeee ettt eee et ee et eee e e e e e eeeeeeaeeaeeanaeeeeeeennnaaaeseerannns 6
1.3 G0N E O 0TS et eeeteeeeeee et ettt e e e e e et a e ee s e e e e e et e aeseeee et eaaaa e aeseeesesasanaeaeseesseansannsesannnnerens 7
1.3.1 Control PoOINt CRANMEL.....ccoo oo e e e e e e et eeaa e e e e e e eeaeraaeeees 7
1.3.2 StAtIC D OMIAIN COMMECTOT - e e e e e e e e e e e e eeeeeeeeeaeaeaeaeaeaeaeaeaeaeaeseseaesaaasaaaaaaeeeeeees 7
1.3.3 Dynamic Domain CONMNECTOT......cuiiiiuiieiiiieeiieeeieeeeiee et e esiteeeieeeeaeeeereeesebeeesnssaeeeesennnens 7
1.3.4 Domain Deletion CoOnMECTOTovii et 7
1.3.5 Supplied Domain CONMNECTOT........ieiviieiiieeeiieeciee et e et e e eiaeeeteeesreeesbeeeessnssaeeeeeesssnseeaeens 8
1.3.6 Reference DoOmain LINKe e e e e eeeennnaes 8
1.3.7 DIVIAET LINK e e e e e e e e e et e e e e e e e e e e e e aeeeeeeeeeeaaeaeen 8
1.3.8 LinK ASSIZNIMENT.....eoitiiiiiiiieiiietie ettt ettt ettt e eaeeraeesebeebeeseaeesbeessseenseessseenseessseesnsseens 8
1.4 Data Control PoOINtS. ..o e, 8
1.4.1 Spawned Control POINES.......c.eiiuiiiiiiccie ettt e e 9
1.4.2 CONCUITENE COMNIIOL POINES ..ttt e e e e eeeeenns 9
1.5 Channel RECOTA....coo oo, 10
2 Data Control Diagram........ccceiieinnnensensinincnesnnenessesisississsssissssessssssssssssssses 11
2.1 Symbols of a Data Control DIiagram........c.cceeeiierieiiieiiieciieiecie et eaee e 11
2.1.1 DATA DIOIMIAIIIS ..ottt e aaeeeeeeeeeenaaaeaeeeenanans 11
2.1.2 BIOCK DOMAIN.cciiitiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et eraaaee e 13
2.1.3 No-wait and Linked-wait Divider DOmainsScooeuueeeeeeeeeeeeeeeee e eeeeeeee e e e e e eeeaeaes 14
2.1.4 WAL DIVIAET DIOIMAIN . ceetititiiiieeeeeeeeeeeeeeeeeeee ettt eeeeeeeeee e eeeseneeeseeaneeeeesenesasanennnaeeeeres 15
2.1.5 WATE DOOITIAIN . ettt et e reaeeesaaeeenanas 15
2.1.6 CONLIOl POINE CRANNEL...ooiiiiiiiiiieieieeeeeeeeeeeeeeeeeeee ettt eeanaee 16
2.1.7 StALIC DOMAIN COMMECTOT ... ettt ettt e e e e e e e et aeeeeeeeeeeeee e aaeeeeeeereaannaaaaeeeenenn 18
2.1.8 Dynamic Domain CONMNECIOT.....c.uieivieriiiiieriieetieriie et eite et esaeeereeseeeseesseessseeeseeeesneeas 19
2.1.9 Supplied Domain CONMECTOTceccuiieeiiieeiieeeiee et eeieeesteeesreeeseaeeessaeeessssseeeeeeansaeeens 20
2.1.10 DoOmain Deletion CoOMMECTOTuuuutiieeeneeeeeeererereeareeenereeaeenenennnan 20
2.1.11 Reference DOmain LINK ... oo oo et ee e e e e e e e e e eeeeeeeraaeaaes 21
2. 112 DIVIAET LINK ettt e e e eenennns 22
2. 1,13 LANK ASSTZNIMECIT...eiiiiiitiiiiieiie ettt ettt et e st e et e bt e e bt e sbee et e e sseesabeesseeenseesseesnseeens 22
2.1.14 EIIPSIS SYMDOIS.cc.uiiiiiiiiieiieieeeieeeee ettt ettt e e taeebeesaneesnseeeensseeeenens 23
2.1.15 Passage Tags and ReferenCes.cccoouiiiiiiiiiiiiiiiieee et 23
2.1.16 Attention MESSAZE...ueeiiieiiiieiieiieeiierieeiteeteeeteesteeebeebeeesseesaeesseesseessseensaessseessseessssaennes 27
2.2 DIESCTIPLION T@XE.uuiiiiiiiieiieeiieiie et etee ettt et et e et e tteeste e beeesseesaesnbeeseessseessssaeeansseeensssens 27
2.3 DIAGIam SHEELS....cuiiiiieiieeiieiieeie ettt ettt et e st e et e e b e etaeesbeebeeesbeeseeensaeeenssaeeennnes 28

Contents vii

2.4 Operational Mode Tables.......ccouiiiiiiiiiieciie e e e e araa e e e e 28
2.5 Standard INterPretation.......cueeccuiieeciiieciieeeiee ettt e et e e s e e e bae e e e e e e e e ennrseeeeeenenns 30
3 DCD EXaMPIeS...unuuiniirnrnrisiirinineisucsinenseissicsissesssisscssessessssssissssssssssssssssssssssssssess 33
3.1 SIMPLle CalCULAtor......iiuiiiiiiii ettt 33
3.2 ReEadEr and WITtOT....ccoiuiiieeiieceeeeeeee et et e e et e e te e e s aaeeeabeeensseeeasaeens 38
3.3 NOUZHLS ANA CTrOSSES...eeuviriiiiiiiieitiettete ettt ettt ettt ettt et sa e sttt et e bt e b e e nateesaeees 39
3.4 MatriX ODJECE TOY ettt ettt ettt 40
Appendix A: Software Architectures..........coeevreseenensensnsisensnsenscnsensecssecsseessaeens 44
ALl INEEOAUCTION .ttt ettt ettt et sttt et et e e e es 44
A2 DIrect ACCeSS ATCRITECTUIE. .cuuiiiieiiiieiieiie ettt ettt et ettt e st e et e et e eseesabeensee s 44
A.3 Bus-line Interface ArChiteCtUIE.......coiiiiiiiiiiiieiieie et 45
Appendix B: Developing Programs Using DCDs........ccceevirenrenrecsensecsensecssecsseesees 49
Bl INtEOQUCTION ittt ettt ettt b et sttt ettt es 49
B.2 Overview of the ApPliCation.......cocciieiiiiiiieieeiiee ettt e 49
B.3 USEr’S SPECTIICATIONS. c.uiitiieiieiiieeiiesiie ettt ettt et e e et et esbeesteessteessteeeennseesenneeesansaeeenns 50
B.4 Program ATCRITECTUTC.......coiiiiiiiiiieie ettt ettt e et e s ee e ennee s 50
B.5 IMPIemMentationccciiiiiiiieiie ettt ettt ettt et e e ta e e e enbaeeenraeean 54
2 2 10 4T 1 VSO PRPPPRUPR 56

L@ (0T ¥ o 57

Document Conventions

The following conventions are used in this document.

Symbol

X

text

text

Document Conventions

Meaning
separates x as a unit of information from the surrounding text.

middle ellipsis means zero, one, or more of the same kind as x.
means that x optional.

ellipsis represents omitted text (as usual).

maroon coloured italic text is a link to the text’s definition.

underlined green text is a link into the document.

Introduction

A model is a concise representation of some desired aspects of a system or process. An
appropriate correspondence exits between parts of the model and parts of the system or process
for various purposes such as:

e to make inferences (especially predictions) with respect to the system or process;
e to gain a concise understanding of the nature of some aspect of the system or process; or,

e to efficiently make modifications (especially adaptations and enhancements) to the system or
process.

The reason for having a model of a system or process is that it is easier and more efficient to draw
conclusions from the model rather than directly from the system or process itself. A model can
also be used to help in the design and implementation of a system or process. In a loose sense, a
model is an analogy of some part of a system or process.

A model can be either physical or theoretical. A physical model typically resembles the actual
object of the model, whereas a theoretical model typically does not. A theoretical model:

e consists of precisely defined abstract entities;
e is typically represented by symbols (graphical, written, or both); and,

e may conform to a set of definitions representing all similar models.

Mathematical models are a particular class of theoretical models. A mathematical model is
specified in terms of mathematical functions and relations typically involving some form of
numbers. A data control model (which may be shortened to DCM) is a theoretical model, not a
mathematical model, and can be used for any system that requires a concise representation of its
discrete data changes.

A DCM indicates some or all of the following data changes within a system.
e Where the data changes occur within the system.
e The nature of the changes.

e The sequence (temporal order) of the data changes (includes concurrent and alternative
changes).

e The causes of the data changes.

A DCM is not intended to represent data flow as such. However, it could be used to show data
flow, but it is not optimised for that purpose.

Any DCM is based on a single DCM definition (the definition itself is not a model). Although the
DCM definition can be used to create a specific model of the discrete data changes within any
specific system, the definition is optimised to create models of data changes within software
systems in particular, including software systems that are distributed over a network (for example
client\server systems) as well as stand-alone application programs.

Data Control Diagrams for Software Systems

A software system can essentially be described in terms of groups of data states, where only one
state of each group can be current at any moment in time. The current state of a particular data
group changes from one state to another at various moments in time. The changes are not
random, but are related to one another in some specific way. In the final implementation of a
software system, the data groups are typically represented as variables and constants. The current
values of the variables for a particular data group represent the current data state of that group.

Introduction 2

Such a system is conveniently represented by a “data control diagram” (DCD) which represents
the DCM of a system in terms of graphical symbols and text. Representing all the data states of a
complex software system at each moment of time is not viable. Fortunately, the data state
changes that occur in a software system are localised changes, meaning that much of the data
state changes occurring at a particular moment in time does not affect the other data in the
system. The data control model of a software system takes advantage of this localisation while
still representing the dynamic nature of the whole system. Another method of representing the
data of a software system is by means of a data flow diagram. A data flow diagram, however,
does not accurately represent the dynamic nature of the system — a data control diagram does.

A DCD of a software system can be used to:
e determine where, in the system, new modifications and enhancements are to be made;
e determine the dependencies of proposed modifications and enhancements for the system;

e determine the location of given data changes, including malfunctions (bugs), within the
system;

o trial different architectures of a new system to determine which one is best before
implementing the system,;

e provide a quick and concise understanding of a system without having to read any source
code;

e generate the source code outline for a new computer program using a software tool (if one is
available);

o cfficiently identify potential design flaws in the system; and,

e concisely represent the data changes and their dependencies of an existing system.

The DCM definition needs to be understood before a DCD can be understood. This document
presents the DCM definition before describing how to represent an instance of that definition by
means of the symbols in a DCD. Note that the DCM definition is not itself a model; the instances
of the DCM definition are the models. An instance of the DCM definition is any system
(typically represented by appropriate symbols) that conforms to the definition.

1

Data Control Model

The data control model (DCM) of a system is a theoretical model that represents the important
data changes that the system (typically a software system) undergoes at different moments in time
possibly relative to other data changes in the system. The model does not represent the actual
time of the data changes but only the sequence of data changes within the system. A data control
model can also be used to represent the data structures of a software system, along with the data
changes within those structures during the operation of the system.

The model does not directly indicate how the information in the system is implemented. For a
software system, there is no mention of functions, procedures, variables, programming languages,
tasks, files, disks etc, except perhaps only for reference to the implemented system. However, the
DCM of a particular software system may be influenced by the fact that it is a software system
that the model describes.

The adaptability of a software system can be reflected in the design of the DCM of that system.
The model then provides the criteria by which the software system can later be modified and
enhanced. A DCM that takes into account the adaptability of a software system will lower the
risk of the software later being modified in an ad-hoc fashion, and will also make it easier to
locate where changes should occur in the software.

A DCM can also be used to describe the functioning of a system that does not have an
implementation. In such a case, or in the case that the implementation is not being considered,
the DCM is said to be “of” the system. In the case that the system does have an implementation
that is being considered, the DCM is said to be “for” the system.

1.1 Data Control Model Definition

The data control model definition is a single definition for all DCMs, and consists of a number of
definitions of various abstract entities that are optimally designed to be used with software
systems. An actual DCM is anything that corresponds to instances of those abstract entities.

There are two broad categories of abstract entities in the definition — domains and connectors.
A connector indicates a certain relation between two domains. In addition, there are also
imaginary entities called control points which “move” along certain connectors from one domain
to another, perhaps causing a data change in the domains that they move to or from. The details
of the data changes in the domains are described in channel records.

The definitions of the various abstract entities of the data control model definition are presented
in the following paragraphs.

1.2 Domains

A ‘domain’ is an entity that contains some sort of data, and may affect control points entering it,
depending on its type. There are six types of domains in the data control model definition: data
domain, no-wait divider domain, wait divider domain, linked-wait divider domain, wait domain,
and block domain. Each instance of a domain in a DCM is uniquely identifiable.

1 Data Control Model 1.2 Domains 4

1.2.1 Data Domain

A ‘data domain’ (sometimes referred to as just ‘domain’ when the context is understood) is a
domain that contains data units, each having a range of possible values. The actual data units
within a data domain may be, but need not be, specified by the DCM designer.

A data domain in the DCM of a system indicates a specified subset of the data in the system such
that any changes that the subset undergoes, within any period of time, does not directly affect and
is not directly effected by data elsewhere in the system (except for predefined sections of data
within that subset which are defined especially to affect other data in the system). The data in a
data domain, then, is not recognised outside of that domain (except for certain sections of the
domain, which are termed the ‘exposed data’ of the domain).

A data domain contains units of data (‘data units’). Each data unit can have one value at a time
of a certain number of possible values. The particular data units and the range of their possible
values in a data domain are collectively called the ‘structure’ of the domain. For example, a data
domain may contain a person’s name and age (the data units in the domain). Another data
domain containing a person’s name, age, and address, for example, has a different structure to the
first domain; if another data domain contains a person’s name and age but the range of possible
names is different from the first domain, then this domain also has a different structure from the
first domain.

The data in a data domain, throughout its life, can potentially undergo a number of sequences of
changes. The set of such sequences is called the ‘sequence set’ of the data domain.

The structure and sequence set of a data domain uniquely defines that domain. That is to say that
if two data domains have either different structures or sequence sets then they are different data
domains.

The data in a data domain persists indefinitely by default unless otherwise indicated.

A data domain has the following characteristics:

e At any particular moment, each data unit must contain any one (and only one) of its possible
values.

e The value of a data unit may change from one moment to another.

e The data units in a data domain are permitted to change only when a control point is in that
domain unless otherwise indicated.

e A data domain must be associated with at least one incoming channel and zero or more
outgoing channels.

A DCM must have at least one data domain.

1.2.2 No-wait Divider Domain

A ‘no-wait divider domain’ (or ‘no-wait divider’ for short) is a domain that allows new control
points to be spawned from existing ones without those existing ones waiting for the new control
points to return back to the domain. A no-wait divider must be associated with at least one
incoming channel and at least one outgoing channel.

A no-wait divider operates as follows:

e For an incoming control point, a new control point is created on each outgoing channel. The
order that the new control points are created is undefined.

e An incoming control point returns to its source domain at the earliest opportunity after all the
new control points have been created (whether or not any new control point has returned).

e Each outgoing control point is destroyed after returning to the no-wait divider.

1 Data Control Model 1.2 Domains 5

Note that an incoming control point cannot itself proceed to an outgoing channel, but must
eventually return to its source domain.

1.2.3 Wait Divider Domain

A ‘wait divider domain’ (or ‘wait divider’ for short) is a domain that allows control points to be
spawned from an existing one but waits for the new control points to return to the domain before
the parent control point can return. A wait divider must be associated with at least one incoming
channel and at least one outgoing channel.

A wait divider operates as follows:

e For an incoming control point, a new control point is created on each outgoing channel. The
order that the new control points are created is undefined.

e Each outgoing control point goes into an idle state after returning to the wait divider.

e An incoming control point returns to its source domain after all outgoing channels each have
an idle control point after returning to the wait divider. In this case, the idle control points
are destroyed before the incoming control point returns to its source domain.

Note that an incoming control point cannot proceed to an outgoing channel, but must eventually
return to its source domain.

1.2.4 Linked-wait Divider Domain

A ‘linked-wait divider domain’ (or ‘linked-wait divider’ for short) is a domain that allows control
points to be spawned from an existing one, and is linked to one or more wait domains. A linked-
wait divider must be associated with at least one incoming channel and at least one outgoing
channel.

A linked-wait divider operates as follows:

e For an incoming control point, a new control point is created on each outgoing channel. The
order that the new control points are created is undefined.

e Each outgoing control point goes into an idle state after returning to the linked-wait divider.

e An incoming control point operates as described under 1.2.5 Wait Domain.

Note that an incoming control point cannot proceed to an outgoing channel, but must eventually
return to its source domain.

1.2.5 Wait Domain

A ‘wait domain’ is a domain that causes an incoming control point to wait for the new control
points spawned by all of the associated l/inked-wait dividers to return to their respective dividers
before the incoming control point returns to the domain.

A wait domain has the following characteristics:

e [t must be associated with only one incoming channel, which can optionally have a timeout
value.

e [t must be associated with no more than one outgoing channel.
e [t must be linked to at least one linked-wait divider.

e [t can be linked only to /inked-wait dividers.

A wait domain operates as follows:

e An incoming control point will become idle. If the incoming channel does not have a timeout
value, then the incoming control point either continues along the outgoing channel (if one

1 Data Control Model 1.2 Domains 6

exists) or returns along the incoming channel (if an outgoing one does not exist) when either
of the following two conditions are satisfied, simultaneously for all outgoing channels of all
the associated linked-wait dividers:

= a control point on an outgoing channel of an associated linked-wait divider is in the idle
state after returning, or,

= there is no control point on an outgoing channel of an associated linked-wait divider.

e The returned idle control points on the outgoing channels of the associated /inked-wait
dividers are destroyed before the incoming control point of the wait domain can return.

e The incoming control point does not wait in the wait domain after returning from the
outgoing channel (if one exists).

e The timeout value associated with the incoming channel (if such a value exists) of a wait
domain is the maximum number of milliseconds that the incoming control point is allowed to
remain idle. After the timeout value has elapsed, the incoming control point goes to the
ready state regardless of the states of the outgoing control points of the linked-wait dividers.
The default timeout value is infinite.

1.2.6 Block Domain

A ‘block domain’ is a domain that causes an incoming control point to be blocked until a control
point from a specially indicated channel enters the block domain.

A block domain has the following characteristics:

e [t must be associated with at least one incoming channel, which can optionally have a timeout
value.

e [t can be associated with zero or more outgoing channels.

e [t can be associated with zero or more specially indicated incoming channels.

A block domain operates as follows:

e A control point from an incoming channel (but not an indicated channel) entering a block
domain is blocked until another control point from an indicated channel enters that domain.
That indicated channel is called a ‘u-channel’ (the ‘u’ stands for “unblock™). The blocked
control point then becomes ready and continues along an outgoing channel if there is one; the
control point of the u-channel returns to its source domain. There can be more than one u-
channel.

e The continuing control point is blocked when it returns back to the block domain (or remains
blocked if there is no outgoing channel). A second control point from a differently indicated
channel entering the block domain causes the blocked control point to return to its source
domain after becoming ready. That other indicated channel is called an ‘r-channel’ (the ‘r’
stands for “return”). The control point of the r-channel returns to its source domain. There
can be more than one r-channel.

e A control point moving along a u-channel or r-channel sets one of two internal signals (a ‘u-
signal’ or ‘r-signal’, respectively) that is accessed by any one of the blocked control points,
which then acts accordingly (becomes ready before it unblocks or returns) after the
appropriate signal is reset. Note that a u-signal or r-signal can be set before a control point
to be blocked enters (or returns to) the domain; the control point then acts immediately based
on the signal as soon as it enters.

e The control point on an outgoing channel, after returning, can immediately move along
another (designated) outgoing channel, then return to move along yet another outgoing
channel, and so on, before it finally returns to the block domain and gets blocked.

e The timeout value associated with an incoming channel (if such a value exists) is the
maximum number of milliseconds that the incoming control point is allowed to be blocked
before it continues or returns. The timeout value and its incoming channel are associated
with a u-signal or r-signal or both. When the timeout period has elapsed, the associated

1 Data Control Model 1.2 Domains 7

signal is set and the incoming control point acts appropriately after the signal is reset. The
default timeout value is infinite.

Note that the same indicated channel can be both a u-channel and an r-channel. Also note that if
a block domain has no u-channels, r-channels, or timeout values, then incoming control points
will be permanently blocked.

1.3 Connectors

There are eight types of connectors in the DCM definition. A connector (except for a link
assignment) can associate any two domains for a particular purpose depending on the connector
type. One of the two domains is called a ‘source domain’, and the other is called a ‘destination
domain’. The source and destination domains of a connector must not be identical unless stated
otherwise. A link assignment only has a source domain. The other end of a link assignment is
attached to an appropriate connector. Each connector in a data control model is uniquely
identifiable.

A DCM must have at least one connector.

1.3.1 Control Point Channel

A ‘control point channel’ (or ‘channel’ for short) is a type of connector that “connects”
(associates) two data domains (the source domain and destination domain), allowing control
points to “move” from the source domain to the destination domain and back. The source and
destination domains are relative to the channel, and may be identical.

A control point channel may be associated with a single control gate, and may also allow a
control point to repeatedly move through and return from the channel in succession if so
indicated in both cases.

1.3.2 Static Domain Connector

A ‘static domain connector’ is a type of connector that indicates that the destination domain is
created automatically by the source domain when the source domain is created (which must occur
before any control point moves to the source domain). A control point in the source domain can
access the data in the destination domain. If the source domain is deleted, then the destination
domain is automatically deleted as well. The source and destination domains must be data
domains, and cannot be identical.

1.3.3 Dynamic Domain Connector

A ‘dynamic domain connector’ is a type of connector that indicates that a control point in the
source domain creates the destination domain before moving (along the connector) to that
domain. The source domain has an automatic reference to the destination domain unless
otherwise indicated. The destination domain cannot be created again unless it is first deleted.
The source and destination domains must be data domains, and cannot be identical.

1.3.4 Domain Deletion Connector

A ‘domain deletion connector’ is a type of connector that indicates that a control point in the
source domain deletes the destination domain after returning from that destination domain. Once
the destination domain is deleted, no control point can move to it unless a new destination
domain is created (via a dynamic domain connector). The source and destination domains must
be data domains, and can be identical.

1 Data Control Model 1.3 Connectors 8

1.3.5 Supplied Domain Connector

A ‘supplied domain connector’ is a type of connector that indicates that a reference to the whole
source domain is temporarily supplied to the destination domain, possibly by a control point in
some other data domain. The reference allows the destination domain to have temporary access
to the whole source domain. The source and destination domains must be data domains, and
cannot be identical.

1.3.6 Reference Domain Link

A ‘reference domain link’ is a type of connector that indicates that there exists a reference from
the data in the source domain to the destination domain; the reference is possibly created by a
control point in some other data domain. Such a reference implies that a control point in the
source domain has access to specific data in the destination domain. 1f the destination domain
ceases to exist, then the reference becomes invalid. The source and destination domains must be
data domains, and cannot be identical.

1.3.7 Divider Link

A ‘divider link’ is a type of connector that associates a wait domain and a linked-wait divider
domain. The wait domain is the source domain, and the linked-wait divider domain is the
destination domain.

1.3.8 Link Assignment

A ‘link assignment’ is a type of connector that indicates the creation of a reference domain link
between two data domains. A link assignment s associated with a source domain, but not a
destination domain. The source domain must be a data domain, which creates the reference
domain link between the two other data domains. The destination end of a /ink assignment is
associated with the reference domain link.

1.4 Data Control Points

A ‘data control point’ (or ‘control point’ for short) is an imaginary entity that signifies changes in
the data state of different domains at different points in time. There may be more than one
control point in a data control model at the same time, but any particular control point cannot
exist in more than one domain at the same time. Every control point must originally exist in a
designated data domain, or be created at a divider domain. A control point moves from one
domain to another along a route, but once the control point begins moving along the route, it
must complete that route, returning back to the domain that created it.

A data control point is imagined to “move” almost instantaneously from one domain (the source
domain) to another (the destination domain) along a passage, possibly copying some of the data
from the source domain to the destination domain. Then, at some future time, the control point
must return back to the source domain along the same passage, possibly copying some of the data
from the destination domain back to the source domain. As a control point moves from the
source domain to the destination domain, or vice versa, it may cause a change to the data state of
those domains after it enters or before it leaves them. A control point on a passage can only be in
transit; it cannot remain on that passage.

Any data that is copied from the source domain to the destination domain, as a control point
moves along a passage, remains persistent in the destination domain until just before the control
point returns from that destination domain. Just before the control point returns, the copied data
is destroyed by default, unless the passage is designated to not destroy it.

1 Data Control Model 1.4 Data Control Points 9

Movement of a Data Control Point

All of the following conditions apply to the movement of any data control point:

e The control point can move from one domain to another only via a passage connecting those
two domains.

e The control point must move from its source domain to its destination domain along a
passage before it can return from its destination domain back to its source domain along the
same passage.

e Once the control point has returned from its destination domain to its source domain along a
passage, it cannot subsequently move from its destination domain to its source domain again
along the same passage without first moving from its source domain to its destination
domain along that passage.

e The control point cannot move from its source domain to its destination domain and return,

and then immediately (at the next moment) move to its destination domain again along the
same passage unless that passage is designated for such repeated movements.

States of a Data Control Point

A control point can be in only one of the following states at any moment while it exists:
e active: the control point is moving along a route.

e idle: the control point is not active and not ready and not blocked.
e ready: the control point is not currently active but can become active at any moment.

e blocked: the control point is waiting (not ready and not active) for an appropriate event
before it can become ready or active.

1.4.1 Spawned Control Points

All (and only) divider domains allow spawned control points. When a control point is spawned,
the new control point is referred to as the ‘child’ control point of the spawner control point,
which is referred to as the ‘parent’ control point. 1f a parent control point ceases to exist while
its child control point still exists, whether the child control point also ceases to exist or continues
to exist is undefined (the DCM designer needs to account for both possibilities). The spawned
control points are necessarily concurrent with each other and the parent control point.

1.4.2 Concurrent Control Points

Two or more control points are said to be ‘concurrent’ if they exist simultaneously. Control
points are concurrent in the following situation: two or more control points exist simultaneously
on the same path, and\or two or more paths each have at least one control point on them. One or
more groups of control paths can be designated to allow concurrent control points to move along
those paths (‘path groups’).

Concurrent control points obey the following rules:

e The paths of outgoing channels of a divider automatically belong to the path group of the
parent control point.

e If a path group has concurrent control points on its paths then no other control point can
exist anywhere else (not even on the paths of other path groups) while any of those
concurrent control points still exist.

e If a control point exists on a path that does not belong to any path group, then no other
control point can exist anywhere else while that control point still exists.

e Paths that do not belong to any path group cannot have concurrent control points on or
among them.

e No two control points can be active simultaneously.

e The positioning of concurrent control points relative to each other at any moment is
undefined.

1 Data Control Model 1.4 Data Control Points 10

The last point is important. Consider any two concurrent control points (whether they are on the
same path or not). Whichever domain one control point is in, the other control point can
simultaneously be in any one of the domains of its path — which one it is in is undefined. This
implies that the DCM designer needs to design the DCM to take into account all possible
positions of each concurrent control point. Note that a DCM designer can use appropriate
domains, such as wait dividers, linked-wait dividers, wait domains, and block domains, and also
use control gates to synchronise the positioning of concurrent control points relative to each
other.

Note that if two or more separate paths that cannot have simultaneous control points are required
to have such simultaneous control points, then those separate paths need to be designed to
incorporate dividers to make those paths a single path group.

1.5 Channel Record

A channel record describes the changes that a control point causes in its source and destination
domains as it moves along the channel connecting those two domains. It also describes any data
that is copied between the domains. There is a channel record for each channel in a DCM.

The following information may be present for each channel record.

1. An identification of the channel for which the entry is about. The identification is a
passage tag.

2. The data change in the source domain (if any) before the outgoing control point moves to
the destination domain.

3. The data that the outgoing control point copies from the source domain to the destination
domain (if any) as it moves to the destination domain.

4. The data change in the destination domain (if any) after the outgoing control point moves to
that domain.

5. The data that the incoming control point copies from the destination domain to the source
domain (if any) as it returns to the source domain.

6. The data change in the source domain (if any) after the incoming control point returns to
that domain.

2

Data Control Diagram

A DCD (data control diagram) is a representation of the DCM (data control model) of a system
using graphical and textual symbols. A DCD has no detailed information relating to the
implementation of the system but may indicate the enhancement scope of a system. That is to
say, a DCD can indicate certain restrictions that should be adhered to when making modifications
to enhance the system. However, a channel record may contain references to the implementation
of the system.

It is important to realise that a DCM, and therefore a DCD, does not explicitly represent any
hierarchical information in relation to the data domains.

A DCD consists of graphical and textual symbols representing elements of the corresponding
DCM, and also contains graphical symbols that are particular to data control diagrams in general.
Those symbols are typically interpreted with respect to the system for which the DCD is designed
— in effect, a DCD symbolises the overall operation of the system.

2.1 Symbols of a Data Control Diagram

The following subparagraphs specify the graphical symbols and text used ina DCD. All
measurements are given in “units”. One unit is 12 printer points (or one pica) for a standard size
DCD. No part of any symbol may overlap any part of another symbol unless stated otherwise.
Text in angle brackets, < and >, is not a literal part of a symbol, but represents a template for
actual text that may be used with a symbol. The default foreground colours are black (RGB: 0, 0,
0), and the default backgrounds are transparent.

2.1.1 Data Domains

Each of the following symbols represents a data domain under various circumstances.

<label> <label> <label>
(<sheet ID>)

Origin Data Domain Data Domain External Data Domain

Description
Origin Data Domain: Indicates the data domain containing the first passage of a route. <label>
i1s a noun phrase description of the domain, written in bold type.

Data Domain: Indicates a regular data domain. <label> is a noun phrase description of the
domain.

External Data Domain: Indicates a data domain on a different diagram sheet labelled <sheet ID>,
but the domain is not itself part of the domains intended in the current sheet. <label> is the
name of the domain on the other sheet.

Specifications
Width and Height: Varies with the <label> text and user’s choice.
Border Thickness
Origin Data Domain: 0.12 units
Data Domain: 0.12 units

External Data Domain: 0.05 units

2 Data Control Diagram

Corner Radius:

Border Colour
Origin Data Domain:
Data Domain:

External Data Domain:

Background Colour
Origin Data Domain:
Data Domain:
External Data Domain:
<label> Face Name:
<label> Height:
<label> Weights
Origin Data Domain:
Data Domain:
External Data Domain:
<label> Position:
<sheet ID> Face Name:
<sheet ID> Height:

<sheet ID> Horizontal Position:
<sheet ID> Distance to Top from Symbol Centre:

Domain Indicators

2.1 Symbols of a Data Control Diagram

0.5 units

Black (RGB: 0, 0, 0)
Black (RGB: 0, 0, 0)
Medium grey (RGB: 160, 160, 160)

Grey (RGB: 225, 225, 225)
White (RGB: 255, 255, 255)
White (RGB: 255, 255, 255)
Arial

1.0 unit (character height)

Bold

Normal

Normal

Centred

Arial

0.5 units (character height)
Centred

—0.3 units

12

The following symbols indicate certain characteristics of the data domain containing them. They

apply only to Origin Data Domain and Data Domain. The symbols are located at the bottom
centre of the domain symbol.

*X Solo Indicator (U+2022). Indicates that a group of data domains cannot have more than
one control point in them collectively at any moment. The x is a number that groups the
domains. The x is optional if the group consists of only one domain.

363 Cloning Indicator (U+263C). Indicates that some of the data in the data domain is cloned
just before a control point moves to the domain. The cloned data is written back to the
original data just before the control point returns from the domain.

(Ref: 1.2.1_Data Domain)

Pseudo Data Domains

The following symbols are not of actual data domains as such, but represent actions similar to
that of data domains. They represent data domains in a different diagram sheet. Pseudo data
domain symbols are defined only for a DCD; they are not defined for a DCM.

<sheet ID> <sheet ID>

< >
<label> <label> (JQQ%L)

Sheet Reference External Sheet Reference External Multiple
Data Domain Data Domain Data Domain

Description

Sheet Reference Data Domain: Indicates the whole DCD on a different diagram sheet labelled
<sheet ID>, but that DCD is itself part of the domains intended in the current sheet. <label> is
optional, and is a noun phrase description of the DCD.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 13

External Sheet Reference Data Domain: Indicates the whole DCD on a different diagram sheet
labelled <sheet ID>, but that DCD is not itself part of the domains intended in the current sheet.
<label> is optional, and is a noun phrase description of the DCD.

External Multiple Data Domain: Indicates more than one domain, but not all domains, on a
different diagram sheet labelled <sheet ID>, but the domains themselves are not part of the
domains intended in the current sheet. <label> is optional, and is a noun phrase description of
the collective domains. The actual domains represented by the symbol are determined by the
passage tags of the passages connected with the symbol.

Specifications
Width and Height: Varies with the <label> text and user’s choice.
Border Thickness
Sheet Reference Data Domain: 0.12 units
External Sheet Reference Data Domain: 0.08 units

External Multiple Data Domain

Outside: 0.08 units
Inside: 0.05 units
Gap between Inner and Outer Borders to Midlines
External Multiple Data Domain: 0.3 units
Corner Radius
Sheet Reference Data Domain: 0.5 units
External Sheet Reference Data Domain: 0.5 units

External Multiple Data Domain

Outside: 0.5 units
Inside: 0.4 units
Horizontal Line Thickness: 0.05 units
Horizontal Line Distance from Top: 0.6 units
Border Colour
Sheet Reference Data Domain: Black (RGB: 0, 0, 0)
External Sheet Reference Data Domain: Medium grey (RGB: 160, 160, 160)
External Multiple Data Domain: Medium grey (RGB: 160, 160, 160)
Background Colour: White (RGB: 255, 255, 255)
<label> Face Name: Arial
<label> Height: 1.0 unit (character height)
<label> Position: Centred
<sheet ID> Face Name: Arial
<sheet ID> Height: 0.5 units (character height)
<sheet ID> Horizontal Position: Centred

<sheet ID> Distance to Top from Symbol Top
Sheet Reference Data Domain: 0.0 units
External Sheet Reference Data Domain: 0.0 units
<sheet ID> Distance to Top from Symbol Centre
External Multiple Data Domain: —0.3 units

2.1.2 Block Domain

The following symbol represents a block domain.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 14

Block Domain

Description

The u-channel has the letter <u> near the block domain.
The r-channel has the letter <r> near the block domain.
The same channel can have both «u> and <r», in that order (ie: <ur).

An incoming channel can have a timeout value, represented as « (ms) >, where ms is the
maximum number of milliseconds that the incoming control point is allowed to be blocked
before it either continues (x is <w) to the next domain or returns (x is <r») to its source
domain, or both (x is <ur>). ms can be a question mark (?), indicating that the timeout value
exists but is not specified in the DCD. The « (ms) > portion is optional, and its omission
indicates that the timeout value is infinite. The text (if it exists) is written near the
destination domain end of the incoming channel at the same position as a passage tag (see
2.1.15_Passage Tags and References for details).

= Example: <u (250))> for an incoming channel means that the corresponding u-signal will
be automatically set 250 ms after a control point on that channel enters the domain while
it (the control point) still has not continued to the next domain, and the u-signal has not
yet been set. The control point may continue before 250 ms if a u-signal is set by another
appropriate control point before that time; the timeout value is then cancelled.

= Example: <r (10)> for an incoming channel means that the corresponding r-signal will
be automatically set 10 ms after a control point on that channel enters the domain while it
(the control point) still has not returned to its source domain, and the r-signal has not yet
been set. The control point may return before 10 ms if an r-signal is set by another
appropriate control point before that time; the timeout value is then cancelled.

Specifications
Width and Height: Varies with the <label> text and user’s choice.
Border Thickness: 0.3 units
Background Colour: Transparent
<label> Face Name: Arial
<label> Height: 1.0 unit (character height)
<label> Position: Centred
Face Name of Tags (u, r, ur): Courier New
Height of Tags (u, r, ur): 0.5 units (character height)
Background Colour of Tags (u, r, ur): White (RGB: 255, 255, 255)

(Ref: 1.2.6_Block Domain)

2.1.3 No-wait and Linked-wait Divider Domains

The following symbols represent both a no-wait divider domain and a linked-wait divider domain
in two orientations. A [linked-wait divider domain is identified by being associated with a wait
domain via a divider link, otherwise the no-wait divider and linked-wait divider symbols
themselves are identical. The diagram below represents both types of dividers.

I -
Vertical No-wait Divider Horizontal No-wait

and Linked-wait Divider Divider and Linked-wait
Divider

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 15

Description
Vertical No-wait Divider Domain: This orientation has all the incoming channels on either the
left or right side and all the outgoing channels on the other side.

Horizontal No-wait Divider Domain: This orientation has all the incoming channels on either
the top or bottom side and all the outgoing channels on the other side.

Specifications
Length: User’s choice.
Thickness: 0.4 units
Orientation: User’s choice (horizontal or vertical).

2.1.4 Wait Divider Domain

The following symbols represent a wait divider domain in two orientations.

Vertical Wait Horizontal Wait
Divider Domain Divider Domain

Description
Vertical Wait Divider Domain: This orientation has all the incoming channels on either the left
or right side and all the outgoing channels on the other side. The two boxes are square.

Horizontal Wait Divider Domain: This orientation has all the incoming channels on either the
top or bottom side and all the outgoing channels on the other side. The two boxes are square.

No channels are permitted to be connected to any part of either box.

Specifications
Length: User’s choice.
Thickness (central bar): 0.4 units
Box Size: 1.0 unit
Orientation: User’s choice (horizontal or vertical).

(Ref: 1.2.3_Wait Divider Domain)

2.1.5 Wait Domain

The following symbol represents a wait domain.

Wait Domain

Description

The domain can have only one incoming channel and no more than one outgoing channel. The
incoming channel can be on any of the four sides, and the outgoing channel is optional and on
another side if it exists. The shape is a square.

The incoming channel can have a timeout value, represented as <t (ms) >, where ms is the
maximum number of milliseconds that the incoming control point is allowed to remain idle. ms
can be a question mark (?), indicating that the timeout value exists but is not specified in the
DCD. The <t (ms)> is optional, and its omission indicates that the timeout value is infinite. The
timeout text (if it exists) is written near the wait domain end of the channel at the same position
as a passage tag (see 2.1.15 Passage Tags and References for details).

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 16

Specifications
Size: 1.0 unit
Face Name of Tag (t): Courier New
Height of Tag (t): 0.5 units (character height)
Background Colour of Tag (t): White (RGB: 255, 255, 255)

(Ref: 1.2.5_Wait Domain)

2.1.6 Control Point Channel

The following symbols represent a control point channel with various indications of incoming
and outgoing data (See 1.4_Data Control Points for more information).

T

No incoming or
outgoing data.

T

Temporary incoming
data only.

T

Temporary incoming
data only and
permanent outgoing

T

Temporary outgoing
data only.

T

Permanent incoming
data.

T,

Permanent incoming
data and temporary
outgoing data only.

:

Permanent outgoing
data.

:

Temporary incoming
and outgoing data
only.

:

Permanent incoming
and outgoing data.

data.

Description

A control point channel is connected between two data domains. The circle of the channel is
always connected to the source domain, and the other end is always connected to the destination
domain. An arrowhead touching the circle indicates incoming data, and an arrowhead on the
other end indicates outgoing data. A hollow arrowhead indicates temporary data transfer only,
and a filled arrowhead indicates permanent (with possibly some temporary) data transfer.
Permanent data transfer means that the data remains persistent in the relevant domain even after
the control point has returned from the source domain; temporary data transfer means that the
data is destroyed just before the control point returns from the relevant domain. No arrowhead
indicates that no data transfer occurs in the implied direction.

A control point channel must be presented as a right-angle path with rounded corners. The bases
of the arrowheads have a concave (circle arc) shape, and the converging sides are straight lines.
No part of a channel may overlap any other connector except at right angles and only on the
straight parts of the connectors. Also, no part of a channel may overlap any domain, except as
follows: both the midline of the circle circumference at the end point of the source domain end of
a channel and the opposite end of the channel (arrowhead tip or connector end point) must
coincide with the perimeter midline of the respective connected domains.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 17

The connector must have a passage tag (see 2.1.15_Passage Tags and References for details).

Specifications
Channel Length: Automatically determined.
Radius of Circle (to Circumference Midline): 0.25 units
Circumference Thickness: 0.12 units
Circle Interior Colour: Transparent
Length of Arrowhead from Base Connection to Tip: 0.8 units
Height of Arrowhead: 0.633... units
Hollow Arrowhead Thickness: 0.12 units
Hollow Arrowhead Interior Colour: Transparent
Path Thickness: 0.12 units
Path Corner Radius: 0.5 units

Repeated Step Symbol

A control point channel has a repeated step symbol if the channel is designated to allow a control
point to repeatedly move from the source domain to the destination domain (and possibly further)
before the next data control step of the passage connected to the source domain (See 1.4_Data_
Control Points for more information).

The following symbols represent a repeated step symbol on the segment of a channel path in the
indicated direction (faint arrow line). The symbol consists of a circular arc with a triangular
arrowhead at the end, and an optional tag at the top-right of the symbol. No more than one
repeated step symbol is permitted on a control point channel.

Ata&b) }(<tag>) K_(;ta?) C(<tag>)
Symbol on upward Symbol on rightward Symbol on downward Symbol on leftward
segment of channel. segment of channel. segment of channel. segment of channel.

Description

The symbol always points in a clockwise direction. The centre of the circular arc is pinned to the
channel path as close as possible to the source domain. The <tag> represents a passage tag, and
is situated relative to the circular arc as shown in the diagrams above. A <tag> is optional; the
default is the passage tag of the channel on which the symbol exists. Note that <tag> is within
parentheses, which are required.

The passage tag (<tag>) on a repeated step symbol indicates the last control step that a control
point on the channel is to move to before those control steps (from the one associated with the
symbol to the indicated last one) are repeated again. The number of times that the control steps
may be repeated is not specified in the DCD; they may be repeated any number of times,
including zero times. For example, if the passage tag of the channel associated with the step
symbol is 3:4, and <tag> is 3: 6, then a control point on the channel moves along the next
channel, 3:5, then along channel 3:6, then immediately returns along channel 3:6 to the source
domain of channel 3:4 via channel 3:5. The control point then repeats the movements zero or
more times (the number of times is unspecified) along the same channels before moving along
channel 3:7 of the original source domain. See 2.1.15_Passage Tags and References for details.

Specifications
Symbol Length (Widest Dimension): 1.2 units
Symbol Width (Narrowest Dimension): 0.4 units

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 18

Circular Arc Thickness: 0.1 units

Circular Arc Radius: 0.65 units (calculated)
Arrowhead Length from Base to Tip: 0.25 units

Arrowhead Width: 0.5 units

<tag> Face Name: Times New Roman

<tag> Height: 0.5 units (character height)

<tag> Position: As shown in the diagrams above.

Control Gate Symbol

A control point channel has a control gate symbol if the channel is designated to allow only one
control point on that channel to proceed while making all other control points in the DCM
temporarily idle.

The following symbol represents a control gate symbol on a segment of a channel path (faint
arrow line) near the destination domain end of the path. The symbol consists of a short line
perpendicular to the direction of the path. No more than one control gate symbol is permitted on
a control point channel.

Control Gate

Description

The symbol is always perpendicular to the channel segment direction (the diagram shows only
one direct out of four directions). The centre of the symbol is pinned to the channel path as close
as possible to the destination domain.

Specifications
Symbol Length: 1.0 unit
Symbol Width: 0.12 units

Distance of Symbol from Channel Arrow Base: 0.6 units (if possible)

(Ref: 1.3.1_Control Point Channel)

2.1.7 Static Domain Connector

The following symbol represents a static domain connector.

—

N

Static Domain Connector

Description
A static domain connector is connected between two data domains. The arrowhead is always
connected to the destination domain, and the other end is always connected to the source domain.

A static domain connector must be presented as a right-angle path with rounded corners. The
arrowhead is a filled triangular shape. The arrowhead tip coincides with the end point of the
connector. No part of a static domain connector may overlap any other connector except at right
angles and only on the straight parts of the connectors. Also, no part of a static domain
connector may overlap any domain, except as follows: both the start point and the arrowhead tip
of a static domain connector must coincide with the perimeter midline of the respective
connected domains.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 19

Specifications
Channel Length: Automatically determined.
Symbol Colour: Blue (RGB: 45, 126, 199)
Length of Arrowhead from Base Connection to Tip: 0.8 units
Height of Arrowhead: 0.633... units
Path Thickness: 0.2 units
Path Corner Radius: 0.5 units

(Ref: 1.3.2_ Static Domain Connector)

2.1.8 Dynamic Domain Connector

The following symbols represent a dynamic domain connector without and with a no-reference
symbol.

Dynamic Domain Connector Dynamic Domain Connector
(No-reference)

Description
A dynamic domain connector is connected between two data domains. The arrowhead is always
connected to the destination domain, and the other end is always connected to the source domain.

A dynamic domain connector must be presented as a right-angle path with rounded corners. The
arrowhead is a filled triangular shape. The centre point of the circle and the arrowhead tip
coincide with the respective end points of the connector. No part of a dynamic domain connector
may overlap any other connector except at right angles and only on the straight parts of the
connectors. Also, no part of a dynamic domain connector may overlap any domain, except as
follows: both the midpoint of the circle and the arrowhead tip of a dynamic domain connector
must coincide with the perimeter midline of the respective connected domains.

The connector must have a passage tag (see 2.1.15_Passage Tags and References for details).

Specifications
Channel Length: Automatically determined.
Symbol Colour: Green (RGB: 111, 184, 111)
Length of Arrowhead from Base Connection to Tip: 0.8 units
Height of Arrowhead: 0.633... units
Radius of Circle: 0.25 units
Path Thickness: 0.2 units
Path Corner Radius: 0.5 units
Size of Cross (Width and Height): 0.5 units
Thickness of Cross: 0.1 units
Distance of Cross Midline from Circle Centre: 0.8 units

No-reference symbol

The cross is a no-reference symbol indicating that the source domain does not have an automatic
reference to the destination domain after the destination domain has been created. Without the
no-reference symbol, the source domain will automatically have a reference to the destination

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 20

domain after the destination domain has been created. The no-reference symbol (if it exists) is
near the source domain end of the connector.

(Ref: 1.3.3_Dynamic Domain Connector)

2.1.9 Supplied Domain Connector

The following symbol represents a supplied domain connector.

Supplied Domain Connector

Description
A supplied domain connector is connected between two data domains. The arrowhead is always
connected to the destination domain, and the other end is always connected to the source domain.

A supplied domain connector must be presented as a right-angle path with rounded corners. The
arrowhead tip coincides with the end point of the connector. No part of a supplied domain
connector may overlap any other connector except at right angles and only on the straight parts of
the connectors. Also, no part of a supplied domain connector may overlap any domain, except as
follows: both the start point and the arrowhead tip of a supplied domain connector must coincide
with the perimeter midline of the respective connected domains.

The connector may have a passage tag reference (see 2.1.15_Passage Tags and References for
details).

Specifications
Channel Length: Automatically determined.
Symbol Colour: Light blue (RGB: 97, 207, 255)
Length of Arrowhead from Base Connection to Tip: 0.6 units
Height of Arrowhead (between Midlines of Converging Lines): 0.6 units
Path and Arrowhead Thickness: 0.2 units
Path Corner Radius: 0.5 units

(Ref: 1.3.5_Supplied Domain Connector)

2.1.10 Domain Deletion Connector
The following symbol represents a domain deletion connector.

L

Domain Deletion Connector

Description
A domain deletion connector is connected between two data domains. The cross end is always
connect to the destination domain, and the circle end is always connected to the source domain.

A domain deletion connector must be presented as a right-angle path with rounded corners. Both
the centre points of the circle and the cross coincide with the respective end points of the
connector. No part of a domain deletion connector may overlap any other connector except at
right angles and only on the straight parts of the connectors. Also, no part of a domain deletion
connector may overlap any domain, except as follows: both the centre points of the circle and the

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 21

cross of a domain deletion connector must coincide with the perimeter midline of the respective
connected domains.

The connector must have a passage tag (see 2.1.15_Passage Tags and References for details).

Specifications
Channel Length: Automatically determined.
Symbol Colour: Dark red (RGB: 165, 42, 42)
Size of Cross (Midline): 0.5 units
Radius of Circle: 0.25 units
Path and Cross Thickness: 0.2 units
Path Corner Radius: 0.5 units

(Ref: 1.3.4_Domain Deletion Connector)

2.1.11 Reference Domain Link
The following symbol represents a reference domain link.

Reference Domain Link

Description
A reference domain link is connected between two data domains. The arrowhead is always
connected to the destination domain, and the other end is always connected to the source domain.

A reference domain link must be presented as a right-angle path with rounded corners. The
arrowhead is a filled triangular shape. The arrowhead tip coincides with the end point of the
connector. Two or more reference domain links that have the same passage tag reference may
have overlapping start points, but otherwise, no part of a reference domain link may overlap any
other connector except at right angles and only on the straight parts of the connectors. Also, no
part of a reference domain link may overlap any domain, except as follows: the start point and the
arrowhead tip of a reference domain link must coincide with the perimeter midline of the
respective connected domains.

A reference domain link may have a passage tag reference (see 2.1.15_Passage Tags and
References for details). However, if a /ink assignment is connected to the reference domain link,
then the reference domain link cannot have a passage tag reference (the passage tag reference
would be on the /ink assignment).

Specifications
Channel Length: Automatically determined.
Symbol Colour: Light blue (RGB: 97, 207, 255)
Length of Arrowhead from Base Connection to Tip: 0.8 units
Height of Arrowhead: 0.633... units
Path Thickness: 0.05 units
Path Corner Radius: 0.5 units

(Ref: 1.3.6_Reference Domain Link)

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 22
2.1.12 Divider Link

The following symbol represents a divider link.

L

Divider Link

Description
A divider link 1s connected between a wait domain and a linked-wait divider domain.

A divider link must be presented as a right-angle path with rounded corners. No part of a divider
link may overlap any other connector except at right angles and only on the straight parts of the
connectors. Also, no part of a divider link may overlap any domain, except as follows: both end
points of a divider link must coincide with the perimeter midline of the respective connected
domains.

Specifications
Channel Length: Automatically determined.
Symbol Colour: Dark red (RGB: 165, 42, 42)
Path Thickness: 0.05 units
Path Corner Radius: 0.5 units

(Ref: 1.3.7 Divider Link)

2.1.13 Link Assignment

The following symbol represents a /ink assignment.

Link Assignment

Description

A link assignment is connected between a data domain (the source domain) and a reference
domain link. The large dot is on the source domain which sets up the reference domain link
between its two domains; the small dot is on the actual reference domain link symbol. Note that a
link assignment does not have a destination domain.

A link assignment must be presented as a right-angle path with rounded corners. Both centre
points of each circle coincide with the respective end points of the connector. No part of a link
assignment may overlap any other connector except at right angles and only on the straight parts
of the connectors. Also, no part of a /ink assignment may overlap any domain, except as follows:
the centre point of the large circle is connected to the perimeter midline of the source domain,
while the centre point of the small circle is connected to the midline of the reference domain link.

The connector may have a passage tag reference (see 2.1.15_Passage Tags and References for
details). Note that the reference domain link to which the connector is connected cannot have a
passage tag reference.

Specifications
Channel Length: Automatically determined.
Symbol Colour: Light blue (RGB: 97, 207, 255)
Radius of Large Circle: 0.25 units

Radius of Small Circle: 0.175 units

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 23

Path Thickness: 0.05 units
Path Corner Radius: 0.5 units

(Ref: 1.3.8_Link Assignment)

2.1.14 Ellipsis Symbols

The following symbols represent an ellipsis symbol in two orientations. An ellipsis symbol
represents omitted domains or connectors, and has the same significance as a regular ellipsis
symbol (...). An ellipsis symbol is defined only for a DCD.

Vertical Ellipsis Symbol Horizontal Ellipsis Symbol

Description

Vertical Ellipsis Symbol: For this orientation, the ellipsis represents omitted symbols between
the symbol above the ellipsis and the symbol below the ellipsis. The two symbols must be of
the same type.

Horizontal Ellipsis Symbol: For this orientation, the ellipsis represents omitted symbols between
the symbol to the left of the ellipsis and the symbol to the right of the ellipsis. The two
symbols must be of the same type.

The omitted symbols are of the same type as the two reference symbols on each side of the
ellipsis, and follow the same pattern as those two symbols.

Specifications
Symbol Colour: Bright green (RGB: 0, 255, 0)
Radius of Each Circle: 0.22 units
Distance between Circle Centres: 0.8 units
Orientation: User’s choice (horizontal or vertical).

2.1.15 Passage Tags and References

The “<tag>” part of the following diagrams represents a passage tag or passage tag reference on
the segment of an appropriate connector path in the indicated direction (the faint arrow line). The
position of a tag relative to the connector path is also shown (the dark red dimension lines). Note
that the faint arrow lines and the dark red dimension lines are presented only for reference
purposes.

I <tag> <tag> —

: <tag> B AI) IB

E }?{) B<tag > A
o ——

Tag on upward Tag on rightward Tag on downward Tag on leftward
segment of connector. segment of connector. segment of connector. segment of connector.

Description

For a passage, <tag> is a passage tag, and the colour is red (RGB: 255, 0, 0). For the other
connectors (reference domain link, link assignment, and supplied domain connector), <tag> is a
passage tag reference, and the colour is black (RGB: 0, 0, 0). Distance 4 is from the source
domain end of the connector along the straight parts of the connector path to the edge of <tag>.
Distance B is from the midline of the connector to the centre of <tag>.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 24

NOTE: <tag> must fully cover the associated connector underneath it, but not cover any circles,
arrowheads, crosses, etc of the connector. <tag> should also be as close as possible to the source
domain, unless stated otherwise for specific connectors. <tag> must not cover any other
connector.

Specifications
Distance A4: User’s choice (within any other specified limit).
Distance B: User’s choice (within any other specified limit).
<tag> Colour: Red or black (see Description above).
<tag> Face Name: Times New Roman
<tag> Height: 0.5 units (character height)
<tag> Background Colour: White (RGB: 255, 255, 255)

Passage Tag Format

The format of a passage tag is:
path-number|@sheet, || (path-group) | : passage-label,| [@sheet,: passage-label,] |

path-number is a unique positive integer, determined by the DCD designer, identifying a control
path. Note that each outgoing channel of a divider necessarily belongs to a different control path
than all the other channels of the divider.

sheet, and sheet, are the diagram sheet numbers (positive integers) on which the specified control
path (path-number) exists if the path does not exist on the current s/eet (in which case both
sheet, and «[Qsheet,:passage-label,]> are omitted). sheet, and < [@sheet, : passage-label,]>
cannot both exist in the same passage tag. sheet, exists if passage-label, exists. <«Q@sheet,
necessarily implies path-number@sheet,| (path-group) |>.

path-group is a unique positive integer identifying the concurrent path group to which the path
belongs (if any); if a path does not belong to a concurrent path group, or if there is only one such
concurrent path group in a DCD, then < (path-group) > is omitted. path-group exists only on the
first passage of the path. Note that path-group exists within parentheses.

passage-label; is a unique label (with respect to the control path identitied by path-number)
identifying a passage of that path. See Passage Label Format below for the format of passage-
label,.

passage-label, is the label of a passage that is not on the current diagram sheet but is the same
passage as the one identified by passage-label;; effectively, passage-label, and passage-label,
are different passage labels for the same passage on different sheets. <[@sheet,:passage-label,]>
exists only on a sheet referenced by a sheet reference data domain (see Pseudo Data Domains
under 2.1.1_Data Domains). See Passage Label Format below for the format of passage-label,.

A passage can have more than one comma-separated passage tag. The first one is the proper
passage tag for the passage; each other passage tag indicates that one of the control steps on
another control point route is the same control step as the said passage.

Examples

Six examples of passage tags follow: 1:1, 1:1al, 37(3):5, 29:4a5b3, 34@10:5,
7:30[Q@4:57a2]. The second last example, 34Q10:5, is a passage tag of a passage in the
current diagram sheet that is the same passage with a passage tag 34:5 on sheet 10. The last
example, 7:30[Q@4:57a2], is a passage tag, 7:30, of a passage in the current sheet that is the
same passage with a passage tag 7:57a2 on sheet 4 (@4:57a2 implies 7@4:57a2).

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 25

Passage Label Format

A passage-label has the following format:
number|letters number,]---

number; is a positive integer associated with a passage within the current control path (specified
by path-number described above).

letters is a sequence of one or more lower-case letters (‘a’ to “z’) indicating an alternative
passage.

number, is a positive integer relative to letters. Note that there is no space between /etters and
number,. <letters number,> may be repeated any number of times with possibly different letters
and numbers.

A passage-label uniquely identifies every passage of a given path in the order that the control
points move along those passages. number; is <1> for the first passage of the path, and «2» for the
next passage, and so on. If there are alternative passages for a particular control step, then
letters is <a> for one of the alternative passages, <o> for another of the alternative passages, «c>
for another, and so on. (/etters is ordered from <a> to «z», and the next letter after «<z» is <aa», then
«ab», and so on to <az», then the next letter after <az> is <bay, and so on. This is standard
lexicographical ordering.) For the first passage of each of the alternative passages, number; is
«1>. number, for the next sequential passage after the first alternative one is «2» (letters remains

the same as for the previous passage), and so on for subsequent passages. This is explained in
the following examples.

Passage Tag Examples

For a simple example where a control path (identified by path-number 2 in this example)
contains four passages, with no alternative ones, the passage tags on those passages would be:
2:1>,¢2:2>,¢2:3», and <2: 4>, in the order that a control point moves along those passages. The
path, in this example, contains only one route. Each number after the colon is a passage-label.
Incidentally, the colon in the passage tag is expressed as “col”, so «2: 3> would be expressed as
“two col three”.

For an example where a control path (identified by path-number 3) contains four passages, with
the third passage being the only alternative one, the passage tags on those passages would be:
«3:1>, «3:2»,<3:2aly, and «3:3», in the order that a control point moves along those passages.
The alternative passage is tagged <3:2al>, and a control point may optionally move along that
passage. A control point moving along the path may move along the passages tagged as «3: 1,
«3:2>, and «3:3» in the given order. Alternatively, the control point may move along the
passages tagged as <3:1>, «<3:2>, <3:2aly, and «3:3>. The path, in this example, contains only
two routes.

For an example where a control path (identified by path-number 5) contains six passages, with
three alternative ones at the second control step only, the passage tags on those passages would
be: (5: 1, <5:1aly, <5:1bly, <5:1cly, <5:2>, and «5: 3> in the order that a control point moves
along those passages. Notice that the three alternative passages are tagged «5:1aly, <5:1bl),
and <5:1cl>. number; (ie: 1) of the three alternative passage tags is the same as the number, of
the previous passage tag (5:1). Also notice that, in this example, the next control step after each
of the alternative steps is the control step for the passage tagged as <5:2>. Therefore, a control
point moving along the path may move along the passages tagged as <5:1>, <(5:1bl», <5:2>, and
<5:3> in the given order. Alternatively, the control point may move along the passages tagged as
5:1y,<5:1cD, <5:2>, and <5:3>. Another alternative is for the control point to skip the
alternative passages altogether. The control point would then move along the passages tagged as
<5:1>, <5:2>, and <5:3>. The path, in this example, contains four routes. Note that the DCD

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 26

reader must take into account all possible routes of a path. Note also that the conditions for the
particular route that a control point moves along may be indicated in the operational mode table
(see 2.4_Operational Mode Tables).

For an example where a control path (identified by path-number 6) contains five passages,
beginning with two alternative ones at the first control step and continuing separately, the
passage tags on those passages could be: <6:1aly, <6:1a2, <6:1bl), <6:1b2), and «6:1b3>.
Therefore, a control point moving along the path may move along the passages tagged as
<6:1al> and <6:1a2> in the given order. Alternatively, the control point may move along the
passages tagged as <6:1b1», <6:1b2>, and «6:1b3>. The path, in this example, contains two
routes.

For an example where a control path (identified by path-number 20) contains five passages,
beginning with two alternative ones at the second control step and continuing separately, but with
another two alternative passages at the second control step of the first alternative, the passage
tags on those passages would be: «<20:1», <20:1aly, «<20:1alaly, <20:1albly, and <20:1bl>.
The path, in this example, contains five routes, indicated by the following passage tags: (1)
20:1; (2) 20:1, 20:1al; (3) 20:1, 20:1al, 20:1alal; (4) 20:1, 20:1al, 20:1albl; (5)
20:1, 20:1bl. The passage tags corresponding to the control steps of this example are depicted
in the diagram below.

Notice that the initial part of the passage tag of each alternative passage is the previous passage
tag. For example, the initial part of the passage tag 20:1albl is the previous passage tag
20:1al. If there were another passage to the right of the passage labelled 20:1albl, it would
be labelled 20:1alb2.

The scheme for passage tags may appear to be unnecessarily complicated, but it allows adding
new alternative passages to a route without needing to alter existing passage tags. A simpler
scheme would likely require changes to existing passage tags when new alternative passages are
added to a route.

Note that passage tags must be shown in red in an actual DCD.

Passage Tag Reference Format

The format of a passage tag reference is:
{passage-tag}
passage-tag is a passage tag. The braces are required.

A passage tag reference is used on certain connectors (reference domain link, link assignment,
and supplied domain connector) to indicate that the action defined for those connectors occurs
when the control step labelled by the passage-tag is performed. For example, if a reference
domain link having the passage tag reference <{3:10}> is connected from data domain A to data
domain B, then the actual reference from the data in data domain A to data domain B is created
by data domain A when the control step indicated by passage tag 3:10 is performed. If, instead,
a link assignment having the said passage tag reference is connected from data domain C to the
reference domain link, then the reference from the data in data domain A to data domain B is
created by data domain C (rather than data domain A) when the control step indicated by passage
tag 3:10 is performed. In this case, the reference domain link itself cannot have a passage tag
reference (to do so would cause ambiguity).

Note that passage tag references must be shown in black in an actual DCD.

2 Data Control Diagram 2.1 Symbols of a Data Control Diagram 27
2.1.16 Attention Message

The following symbol represents an attention message. An attention message is used to draw the
attention of the DCD reader to important circumstances on the DCD that require immediate
attention. It is not intended to present general information — general information can be
presented in the description text or operational mode tables. An attention message is defined only
for a DCD.

Message goes here.

~

Attention Message

[Text for the Attention]

Description

An attention message is a rounded rectangle containing the message. Zero or more straight-line
“pointers” can originate from the centre of the rectangle. The circle on a pointer is near the item
in the DCD that requires attention.

Specifications
Box Width: User’s choice.
Box Height: Varies with the text and user’s choice.
Corner Radius: 0.5 units
Circle Radius: 0.25 units
Circle Position: User’s choice.
Border and Pointer Colour: Dark red (RGB: 165, 42, 42).
Background Colour: Yellow (RGB: 244, 229, 69)
Text Face Name: Arial
Text Height: 1.0 unit (character height)
Text Margin from Box Midline Perimeter: 0.3 units

2.2 Description Text
A data control diagram is typically associated with description text as an attached document. The
text can be for the whole diagram and can include separate sections for any of the diagram sheets
in the diagram. The description text may include the following information.

e A description of the purpose of the DCD.

e Class diagrams for any of the data domains in the DCD.

e The architectural principles of the corresponding DCM.

e Restrictions on the modifications to the DCD. For example, if some parts of the DCD should
never be modified, that information should be present. Or, if some parts are allowed to be
modified only in certain ways, that information should be present.

e Indications of where and how new modifications and enhancements are to be made to the
DCD.

e The necessary dependencies that are required for future modifications and enhancements to
the DCD.

e The relation of the DCD to the implemented software. For example, the DCD may show only
the main structures of the software.

Of course, any other useful information should be included in the description text. Note that
information that does not require immediate attention should not be presented on the DCD itself.

2 Data Control Diagram 2.3 Diagram Sheets 28

2.3 Diagram Sheets

A data control diagram may be spread over one or more diagram sheets for convenience. A
diagram sheet can have domains and passages that are identical to other domains and passages on
other sheets. ldentical domains on different sheets are identified by having the same domain
labels. Identical passages on different sheets are identified by their passage tags and passage tag
references (see 2.1.15_Passage Tags and References for details).

To reduce complex contents of a diagram sheet, a DCD may be split up and presented on multiple
sheets using pseudo data domains which represent various parts of the DCD in a different
diagram sheet (see Pseudo Data Domains under 2.1.1_Data Domains for details).

The following rules apply to the contents of a diagram sheet.

e (Connectors cannot be continued across sheets.
e The same data domain label on multiple sheets represents the same data domain.

e The same data domain may be represented more than once on the same sheet. In this case,
the representations have the same domain label but with «(n\m]> appended to the end of each
label, where n and m are positive integers, and »n is a sequential number unique among the
domain representations, and m is the total number of domain representations. For example, if
three representations of the domain labelled MainIFace are desired on the same sheet, the three
representations must be labelled «MainlFace [1\3]», <MainlFace [2\3]>, and <MainlFace [3\3]>.

e FEach sheef must be labelled by a positive integer, n, as «Sheet n>.

e All sheet numbers of a DCD must be in sequence beginning with «Sheet 1>, which is the main
sheet. The next sheet is <Sheet 2>, and so on.

e In addition to <Sheet n>, a sheet may have a title in parentheses. For example, <Sheet 1 (Main
Program)).

A diagram sheet could also consist of a textual reference to a sheet on another DCD in a different
file. For example, the text of a sheet could be «See diagram sheet 5 in the file
C:\MyFiles\DCDfiles.dcd>. A summary of the contents of the referenced sheet would also be
included.

2.4 Operational Mode Tables

A DCD containing only the symbols mentioned in the paragraphs above would be insufficient to
show the details of data changes occurring within the data domains. To express such data
changes, additional information will need to be included in the DCD. That information is
presented in one or more operational mode tables.

An operational mode table describes operational modes (the set of passages involved in named
operations) and channel records for a DCD. The DCD designer decides the appropriate
operational modes and corresponding channel records. There is one operational mode table for
each operational mode.

An operational mode table consists mainly of one or more channel records that are related to the
corresponding operational mode. An operational mode table must be presented in the following
format.

Operational Mode n (Heading)

passage-tag, ‘-
Description
REF: reference
[SRC: details |
[OUT: details-|

2 Data Control Diagram 2.4 Operational Mode Tables 29

[DST: details;]|
[IN: details,]
[SRC: detailss]
[NOTE: detailse|

passage-tag, ‘-

[COMMENT: Comment]|

where

n is a unique positive integer, beginning with 1 (one), and increasing sequentially for each
operational mode.

Heading is a short description of the operational mode. For example, Initialisation. Note that
the heading is in parentheses.

passage-tag is the passage tag of the passage to which the rest of the indented data refers. The
format for passage-tag is: path-number| (path-group) | : passage-label; as defined at
2.1.15_Passage Tags and References. There can be more than one comma-separated passage-tag.
The first one is the proper passage tag for the passage; each other passage tag indicates that one
of the control steps on another control point route is the same control step as for the said
passage. For example, 1:2.

Description is a short description of the channel record. For example, Gets the Welcome Page
data from disk.

reference is typically a function name in the implemented software that corresponds to the
channel record. For example, GetData(). It could also be a reference to another operational
mode that contains the passage-tag. For example, if the passage-tag is 2:6, but a different
operational mode, say operational mode 3, contains a channel record with one of its passage-
tags being 2:6, then reference would refer to that other operational mode. So, reference would
be See op mode 3. The rest of the data in the channel record would typically not exist since it
would be in the referenced channel record (2:6) of operational mode 3. reference should be a
dash (-) if it is not needed.

details, is a short description of the important changes in the data of the source domain before a
control point moves to its destination domain. For example, Convert position and size to
screen coordinates.

details, is typically a list of the data that is transferred from the source domain to the destination
domain by a control point. The data could be the names of actual variables in the implemented
software, or it could be simple descriptions of such data. If reference is a function name, details,
is typically a description of the arguments to that function. If no data is transferred to the
destination domain, then «OUT: details,> is omitted. For example, num rows, num columns.

details; is a short description of the important changes in the destination domain after a control
point moves to it. For example, Reset the data to default values.

details, is typically a short description of the data that is transferred from the destination domain
to the source domain by a control point on its return to the source domain. 1f reference is a
function name, details, is typically a description of the return values of that function. If no data
is transferred to the source domain, then <IN: detailss> is omitted. For example, Dialog box
response.

detailss is a short description of the important changes in the source domain after a control point
returns from its destination domain. For example, Check that the response was valid.

2 Data Control Diagram 2.4 Operational Mode Tables 30

detailsq is any important notes relating to the channel record. For example, The Welcome Page
is reference number zero.

Comment is any important notes relating to the operational mode. For example, A request could
be the first, previous, next, or last request.

The text in the IN and OUT fields can use the following expressions:

A := expression Typical assignment.

A< B Value in B is transformed then copied to 4.

A<~ (B, ,C) Values in B, -+, C are transformed; the result is copied to 4.

(4, =, An) < (B1, =, Bw) Values in By, -+, B,, are transformed; the result is copied to 4, -, 4,.
A?B If A is true then B.

A?B:C If A is true then B else C.

A1 ?A4,: 437 A4:As? 7 A, Equivalentto: 41 ? A> 1 (A3 ? As: (4As ? -+ 7 Ay)).

2.5 Standard Interpretation

The DCM definition is optimised for modelling data changes within software systems. Since a
DCD typically represents a DCM of a software system, it is appropriate to have a defined
standard interpretation of the elements of the DCD that show the relationships between the DCM
and the software system.

The advantage of having such a standard is to enable software developers to correctly interpret
the correspondence between the DCD and the software represented by it. Developers can then
design and make appropriate modifications to the software via the DCD. The standard
interpretation of a DCD is intended only for stand-alone application programs.

The main elements of a DCD are domains, connectors, and data control points. So these are the
components that require a standard interpretation. In the standard interpretation, data domains
correspond to data structures in the software being modelled, and passages represent function
calls. Control points represent the execution control of the software along with the data passed
to, and returned from, the function calls. The data structures are typically class instances in the
object-oriented paradigm, and functions are typically function members of the classes. An
optional class structure diagram can also be included in the standard interpretation. So, the rules
for the standard interpretation of a DCD are quite simple.

The diagram below is an illustration of a simple DCD for a program displaying the result of
multiplying the width and height of a rectangle to obtain the area for displaying. The source code
(written in the ETAC™ programming language) that the DCD represents is also shown.

width Height

The following operational mode table that goes with the DCD above.

2 Data Control Diagram 2.5 Standard Interpretation 31

Operational Mode 1

1:1
Get the width.
REF: GetW()
IN: width

1:2
Get the height.
REF: GetH()
IN: height

1:3
Calculate the area.
REF: CalcA()
OUT: width, height
DST: Calculate the area: width times height.
IN: area

1:4

Display the area value.

REF: Print()

OUT: area

DST: Display the area value to the console.

The source code for the DCD above is shown below.

Height :- data: {Val :- ; GetH :- fnt:() {val;};};

Width :- data: {Vval :- 5 GetW :- fnt:() {val;};};

Area :- data: {CalcA :- fnt:(pW pH) {(pW * pH);};};

Display :- data: {Print :- fnt:(pV) {write_con num_to_str pV;};};

start_local;
W :- Width.GetW(); H :- Height.GetH(); A :- Area.CalcA(W H);
Display.Print(A);

end_local;

The data domain labelled Main corresponds to the code between start local and end local.
Each of the other data domains correspond to the same-named data objects in the code.

The control point begins in Main (which corresponds with the execution control beginning at the
first statement after start local). The control point then moves along the passage labelled
1:1, returning the width value from Width, and storing that value in Main. The movement of the
control point corresponds with the function call of GetW () (see <REF: GetW()> under 1:1 in the
operational mode table). The control point then moves along passage 1:2, returning the height
value from Height, also storing that value in Main (see <REF: GetH()»> under 1:2 in the
operational mode table). After returning to Main, the control point then moves to Area,
calculates the area from the transferred width and height obtained earlier, then returns back to
Main, storing the area value there (see under 1:3 in the operational mode table). Then, the
control point moves along passage 1:4 with the value of area, where it is displayed to the
console (see under 1:4 in the operational mode table). Finally, the control point returns to Main
then disappears.

2 Data Control Diagram 2.5 Standard Interpretation 32

Of course, the program above could have been written is a simpler way as follows:

Width :- ; Height :- ; Area :- ?;

Area := (Width * Height);
write _con num_to_str Area;

The simpler way still conforms to the DCD, but not in a way that is consistent with the standard
interpretation of a DCD. However, the code does not conform to the operational mode table.

The example above is quite simple, and, in practice, there would not be much merit in providing a
DCD for it. However, consider a much more complex program, like a diagram construction or an
animation program, that requires a significant modification during its life. Having a DCD for that
program would enable a programmer to determine the effects and consequences of such a
modification via the DCD before the actual source code is modified.

3

Data Control Diagram Examples

This chapter shows some examples of DCDs with explanations. For a proper understanding of
the symbols in a DCD, the examples need to be read in the order presented.

3.1 Simple Calculator

The following is a DCD for a simple calculator with the usual four arithmetical operations and an
equal operation. The calculator program is written in the ETAC™ programming language. The
features of the calculator are as follows:

e No parentheses.

e No operator precedence (all operations are left associative).

e Cumulative operations (operators evaluate previous operations).
e Standard infix evaluation.

e No current display or operation clearing.

e No back erase.

e No memory.

e Operators: ‘=7, ‘X’ ‘=’ 4+’ =",

e Digits: ‘0’ to ‘9°, “.".

77 ETAC SimplessEd

2

)
22

BE
P

B
(=)
Q
0

1

(=
[

3

(=
(>

o
B
(]
B

The DCD consists of two diagram sheets containing the DCD symbols, three operational mode
tables, and four class diagrams. Operational mode 3 is presented twice: the first presentation
(alongside sheet 1) represents a top-level view, and the second presentation (alongside sheet 2)
represents a lower-level view of the actual calculation process. The skeleton source code of the
calculator program is also presented later, created entirely from the information in the DCD.

Note that the DCD below does not represent the graphics aspects of the calculator program but
only its essential features. Representing the graphics aspects as well would be too complex for a
first illustration of a DCD.

3 DCD Examples

Operational Mode 1 (Initialise)

Sheet 2 (Calculations)

3.1 Simple Calculator 34

Operational Mode 3 (Operators)

11 31
Program] Create Display object. Activate operation (including equal).
REF: dspPrepare() REF: gCalculate()
11 1:2 13 OUT: operator.
3.3 32 1:2 DST: Do specified calculation and store operator
Create 10 digit buttons and a decimal point button. MNOTE: gCalculate() wil display an eror
REF: digPrepare(). message if it fails.
a1 DST: @goSetMseBtnFnt() // Set mouse button handler.
@goSetMseHitFnt{) # Set button hit handler 32
. . . Get display value and store.
Display 2:1=({ Digits I Operators 13 REF: depGetValue()
Create 4 operator buttons and equal button. DST: Reset display to clear for next digit
REF: oprPrepare() IN: display value.
DST: @goSetvseBtnFni() // Set mouse button handler
Sheet 1 (Program) @goSetMseHitFnt{) #/ Set button hit handler. 33

Operational Mode 2 (Number Pad)

2:1
Put digit or decimal point.
REF: dspPutDigit()
OUT: digit or decimal point.

QOperational Mode 3 (Operators)
1gPrevVal: dec = 0.0

" shestl 31 Stares the previous value.

|\ Operators ,| (Domam Program" is defined in sheet 1) Adivate operation (including equal). P Py —

) Q REF:3@1:1 Performs calculation.

- pOper == operator label.
1[@1: 39
Get display value and store.
REF:3@1:2 -
i N @ Digits
3:2 [@1:2]—[[;Vhee:al 33 The digit buttons maintenance module.
5|
036 [@1:3 T . ray . Get previous operator. -
REF-- digPrepare _(}_
Prepares the Digits module.
IM: operator.
SRC: operatorI=""? 3:3a1
3:3atl Operators
Get previous value. The aperator buttons maintenance module.
PrevVal REF: -

IN: Previousvalue.
SRC: Use operator with displayed and
previous values. Store result.

34
Put received operator.
REF: -
OUT: received operator.

Evaluate and display result.
REF: dspSetValue()

SRC: Evaluate stored values.
OUT: result or ERROR.

Program
Main calculator program.

_lgPrevOper: str = ""
Stores the previous operation.

oprPrepare ()
Prepares the Operators modufe.

Display

The display maintenance module.

_ldspClearNext: bool = false
_ldspValue: dec = 0.0

35 1dspStrValue: str = "g"
Store value or result. dspSetValue(in pValue:dec|?)
REF: - Sets the display value.

OUT: stored value or result.

36
Display value
REF: 3@1:3
OUT: stored value or result

dspGetValue() : dec
Gets the display value.

dspPutDigit{in pDigit:atr)

Appends a digit or decimal paint to the end of the display value.

dspPrepare ()
Prepares the Display madule.

The program begins with operational mode 1, the initialisation phase (see «<Operational Mode
1 (Initialise)> along with the corresponding diagram on <Sheet 1 (Program)>). The
control point for that operational mode first comes into existence in the Program domain. It
then creates the Display domain before initialising it via passage 1:1. After returning to the
Program domain, the control point creates the Digits domain before moving to it via passage
1:2 to initialise the domain. Finally, the control point creates and initialises the Operators
domain via passage 1:3, then returns to Program and disappears.

Operational mode 2 describes what happens when the user clicks a digit pad or decimal point
(button). The control point for that operational mode is created at the Digits domain before it
moves to the Display domain, via passage 2: 1, taking with it data indicating the digit or decimal
point that was clicked. The digit or decimal point is displayed to the user. The control point then
returns to the Digits domain and disappears.

Operational mode 3 describes what happens when the user clicks an operator button. The control
point for that operational mode moves from the Operators to the Program domain, via passage
3:1, taking with it data indicating the operator that was clicked. While the control point is in the
Program domain, it performs the specified calculation and stores the given operator. As part of

3 DCD Examples 3.1 Simple Calculator 35

the calculation, the control point moves to the Display domain via passage 3:2. While in that
domain, the calculator display is cleared. Upon returning to Program, the control point takes
with it the displayed value (before it was cleared). The control point then moves to the Display
domain with the final calculated value, via passage 3: 3, after evaluating the stored values. The
control point then eventually returns to the Operators domain, where it began, and disappears
(gets destroyed).

For this particular DCD, the designer decided to show the details of the calculations on a separate
diagram sheet, rather than on the main sheet. The DCD of «<Sheet 2 (Calculations)> shows
the details of operational mode 3. The first passage, 3:1, of <Operational Mode 3) (next to
<Sheet 2») corresponds to passage 3:1 in <Sheet 1>. This is indicated by the passage tag
«3:1[@1:1]»>in <Sheet 2>. This passage tag means that the current passage tag is 3:1 (the 3:1
of <3:1[@1:11]»), but the passage tag is officially presented in «<Sheet 1) (the @1 of
«3:1[@1:1]>) also under passage tag 3:1 (the 3 along with the second <:1>in «3:1[@1:1])>) of
that sheet. 1t is just a coincidence that both passage tags are the same (3:1). The passage tag
3:1 under «Operational Mode 3» (nextto «<Sheet 2)) also has a reference to the
corresponding passage tag in «<Sheet 1). The 3@1:1 at REF: reads as: «3:1> (3@1:1) of <Sheet
1> (3@1:1). A similar correspondence occurs with the passage tags 3:2[@1:2] and 3:6[@1:3]
of «Sheet 2).

The control point on <Sheet 2>, for <Operational Mode 3», first moves from data domain
Operators then to Program, via passage 3:1. The data domain Program is defined in «Sheet
1> (as per the yellow attention message). Data domains Operators and Display are also defined
in «<Sheet 1), but they are not intended as being part of «<Sheet 2>, so the appropriate data
domain symbol is used to indicate that fact in «<Sheet 2>. The control point moving from
Operators to Program corresponds with the control point at passage 3:1 of <Sheet 1> (as
mentioned in the previous paragraph) also moving from Operators to Program. Therefore, the
same processes occur with respect to the current control point as they do with the corresponding
control point in «<Sheet 1>; those processes need not be repeated here. Similarly, the control
point then moves to Display, via passage 3:2, then returns, as it does for the corresponding
situation with passage 3:2 in «Sheet 1. The control point then moves to PrevOper via
passage 3:3, returning the operator that was stored there. Now, at Program, if the returned
operator is an empty string then the control point moves along passage 3:3al, otherwise it skips
that passage. This is indicated at «<SRC: operator != "" ? 3:3al> under passage 3:3 of
«Operaational Mode 3». The control point then moves along passages 3:3al (if required),
3:4, 3:5, then, finally, along 3:6 before eventually returning along passage 3:1 to Operators,
where it began. Passage 3:6 of <Sheet 2) corresponds with passage 3:3 on «(Sheet 1) as
indicated by 3:6[@1:3].

The software implementation of the diagram shown in «Sheet 2> is shown below for reference.
In this case, the data domains PrevOper and PrevVal in the diagram are implemented as global
variables (_1gPrevOper and 1gPrevVal, respectively) in the code. The code contains
commented references to the passage tags in «Sheet 2>. Note that the standard interpretation of
a DCD does allow data domains to be interpreted as variables if necessary.

3 DCD Examples 3.1 Simple Calculator 36

gCalculate :- fnt:(pOper[*str*]) [*3:1%*]

{
DVal :- Display.dspGetValue(); [*3:2%*]

if (_1gPrevOper != ?) then [*3:3%]
{
DVal := [*3:3al%*]
when PrevOper is [*3:3%]
"+" then {(_1gPrevVal
"-" then {(_1gPrevVal
"*" then {(_1gPrevVal
"/" then {(_1gPrevval
else {DVal;} [*3:3a1*]
endwhen;

DVal);} [*3:3a1*]
DVal);} [*3:3a1*]
DVal);} [*3:3a1*]
DVal);} [*3:3a1*]

N ¥ 1+

}

endif;

_1gPrevOper := pOper; [*3:4%]
PrevVal := DVal; [*3:5%]

_1gDisplay.dspSetValue(DVal); [*3:6%]
¥

Reading data control diagrams may seem daunting at first, but the ideas expressed in them are
actually quite simple once the intention and concepts underlying them are understood. The great
advantage of having a DCD representing a computer program is that important overview
information about the program can be gained quickly without needing to read the program source
code. The consequences of various events that can occur to the program can be traced easily with
a DCD. Also, a DCD can be used to set the structure of a program before implementing it.

The DCD above also contains class diagrams for the various data domains. Class diagrams in a
DCD are optional. In this case, with the class diagrams, the outline source code of the calculator
program can be extracted from the DCD, as shown below. All that needs to be done is for the
details of the source code to be filled in by the software designer.

3 DCD Examples 3.1 Simple Calculator 37

Essentially, the DCD represents the source code above, making it easy to gain an overview of the
source code without needing to read it.

3 DCD Examples 3.2 Reader and Writer 38

3.2 Reader and Writer

The following is a DCD fragment, that can be used in other DCDs, to transfer data from one data
domain, Source, to another, Destination, in a synchronised way without data corruption. The
reading and writing requests are asynchronous, but the data transfer is synchronous. The DCD
illustrates the operations of concurrent control points. The operational mode tables for this
illustration are not needed since it is an abstract example.

A

Source

A control point begins at the shaded (unnamed) data domain at the left of the diagram, moving to
the wait divider domain via passage 1:1. The wait divider spawns two control points: one for
the reading (control path 3) and one for the writing (control path 2) of the data. Meanwhile, the
initial control point waits for the spawned control points to return to the wait divider before the
initial control point, itself, returns to the shaded data domain. The order that the two spawned
control points are created is undefined (this is where the asynchronicity occurs).

Beginning with path 3, the control point moves to D2, along passage 3:1, then to Source along
passage 3:2. Upon returning from Source, the control point returns some data with it from
Source (this is the data to be eventually transferred to Destination), and passes that data to the
block domain, B2, via passage 3:3. The control point is then blocked by B2 until another
control point moves along passage 2 : 2 later to release the blocked control point.

The control point on path 2 moves to D1 along passage 2:1, then moves along passage 2:2 to
B2, unblocking the previously blocked control point on path 3. That unblocked control point
then moves to D3 via passage 3:4, taking the data from Source with it and storing that data in
D3. The control point on path 2 eventually returns to D1, then moves to the block domain, B1,
via passage 2:3, and is blocked. The control point on path 3 now returns to B2, but is not
blocked again because passage 2 :2 is marked to not block it on return. The returning control
point returns to D2, then moves along passage 3:5 to unblock the waiting control point on path
2. The control point on path 3 can now return to the wait divider and eventually disappear.

That unblocked control point on path 2 now moves to D3 along passage 2:4, and returns the data
that was previously stored there by the control point that was on path 3. The control point now
returns to B1, without being blocked, and then to D1, passing the data that was in D3 to
Destination via passage 2:5. That control point can now return to the wait divider to die (RIP).
Data has been transferred from Source to Destination successfully without corruption.

The important point here is that it does not matter whether a control point begins on path 2 or
path 3 first. The data will still be transferred without corruption.

The DCD illustrated above, without the shaded domain and the wait divider, can be inserted into
some other suitable DCD where path 2 and path 3 would each belong to different concurrent
path groups.

3 DCD Examples

3.3 Noughts and Crosses

3.3 Noughts and Crosses

39

The following is a DCD for the popular noughts and crosses game, also known as tic-tac-toe. In
this case, the DCD is intended to be implemented in the ETAC programming language using VIS

(Visual Interaction System). The vis_DPlane and vis_VIEW domains shown in the DCD are

data objects defined in that language. However, with very little modification, the DCD could also
be implemented in any other graphics programming language.

When implemented, the program would display space for nine symbols in a 3 x 3 grid. Each cell

in the grid can contain only a nought (0) or a cross (x) or neither. The game begins with each
cell being blank. Of two players, one player is allowed to put only a nought in the cells, and the

other player is allowed to put only a cross in the cells. Each player has a turn in putting their
mark in a cell by clicking on the cell. The first player to fill three cells in a line with their mark,

either horizontally, vertically, or diagonally, wins the game. The game may not have a winner.

Program 1:2

11

AboutBox

Operational Mode 1 (Initialisation)

11

1:3

2:1b1

2:1
I vis_DPlane I
2:1al

1:4

Display introduction and copyright information.

REF: -

12
Create the main drawing plane.
REF: -

13
Create the main VIEW.
REF: -

1:4
Create the cell manager.
REF: -

1:5,1:8, 1:11, ..., 1:29
Create the cells.
REF: -

16, 1:9, 1:12, ..., 1:30

Create the cell graphics object for'O".

REF: -

1:7,1:10, 1:13, .., 1:31

Create the cell graphics object for 'X".

REF: -

2:1alal, 3:3
CellMgr

1:29 15

Operational Mode 2 (Play)

21

Record the mark for the specified cell for the current player.

REF: -

OUT: cell number

DST: Set next player.

IN: player status (before next player set).

2:1a1
Set the appropriate mark in the specified cell.
REF: -
OUT: mark, cell number

2:1a1a1, 2:1a1b1, ., 2:1a1i1
Show the specified information on the VIEW.
REF: -
OUT: mark

2:1a1a2, 2:1a1b2, ., 2:1a1i2
Show or hide the graphics object.
REF: -
OUT: bool value.

2:1a1a3, 2:1a1b3, ., 2:1a1i3
Show or hide the graphics object.
REF: -
OUT: bool value.

2:1b1
Display message on the status bar.
REF: -
OUT: text message.

A -
d CoreData

2:1alil, 3:27 0 Mark
1:6
2:1ala2, 3:4
Cell 1 }:
; 2:1ala3, 3:5
1:7
X Mark

Cell 9

Operational Mode 3 (New Game)

31
Initialise data for a new game.
REF: -

32
Clear the cells.
REF: -

33, 36,39, ..., 327
Clear the cell.

34, 3:7,3:10, ..., 3:28
Hide the graphics object.
REF: -
OUT: false.

35,38, 3:11, ..., 3:29
Hide the graphics object.
REF: -
OUT: false.

3 DCD Examples 3.3 Noughts and Crosses 40

Only the elements of the above DCD that have not been explained in the previous examples will
be explained for this DCD.

In the DCD, some passages have two passage tags, for example, <2:1alal, 3:3>. The first
passage tag is the proper passage tag for the passage. The second (and third, etc, if they exist)
passage tag belongs to a different control point route having the same step as the first one. The
implication here is that, if the passage corresponds to a function call in the implementation, then
that same function will be “called” by the control points on each of the different routes during
some time when those control points are active.

The DCD shows what appear to be green ellipses. In fact, they are ellipses. The ellipsis symbol
represents omitted symbols implied between the two symbols near each end of the ellipsis. The
implied symbols are omitted for convenience, and can mentally be inserted by the human DCD
reader. In the DCD above, the leftmost ellipsis symbol, between passages 1:29 and 1:5,
represents the passages 1:26,1:23,1:20,1:17,1:14, 1:11, and 1:8. The sequence can be
determined from the operational mode table for «Operational Mode 1> under 1:5.

The first vertical ellipsis represents omitted passages between 2:1alal and 2:1alil, and also
between 3:3 and 3:27. «Operational Mode 2) specifies the implied passage tags of those
passages.

The second vertical ellipsis represents omitted data domains between Cell 1 and Cell 9.
Included with those omitted domains are the passages that are connected with them, as implied by
Operational Mode 2.

The DCD also shows alternative passages along which a control point can move. After moving
along passage 2:1, the control point can move either along passage 2:1al or 2:1bl. Ifit
moves along passage 2:1al, it can then move along any one of the passages 2:1alal, 2:1albl,
-+, 2:1alil. If it moves along passage 2:1alal, it then moves along passage 2:1ala2. Ifit
moves along passage 2:1albl (implied in the DCD), it then moves along passage 2:1alb?2
(implied in the DCD)), and so on.

The DCD of an application program presents a quick overview of the program without needing to
read the source code. It also helps to structure the source code in accordance with the DCD. 1t is
important, though, to make sure that the DCD is always up-to-date.

3.4 Matrix Object Toy

The following DCD is for a matrix object toy program written in the ETAC programming
language. A matrix object is a graphics component in VIS (Visual Interaction System) which is
part of the language. The program allows the user to play with the various features of a matrix
object.

The diagram below is how the matrix object toy program appears to the user. The matrix is the
shape containing the nine coloured rounded rectangles and circles with digits in them on the
“MOT Window” window. The dialog box controls the layout of the coloured rectangles.

3 DCD Examples 3.4 Matrix Object Toy 41

;IEI{II
=1olx|
[Matrix Object Toy =l
| New Matrix Object shift Order

e
|
=

—Cons Type - [—Stretch — —Horiz, Justification — Gap:

Nl I Horiz. | | € Left @ Centre lefiap: [0

& Dynamic | [~ vert. | | Right © Full width: [0
Right Gap: | 0

[Wrap——| [PostWrap| [Vert. Justificaon —| | TopGap:[0

™ Horiz, ™ Horiz | | Top * Centre Height: [0

vt I Vert. | | Bottom Ful Bottom Gap: [0

Horizontal Shift Left Spec —Horizontal Shift Right Spec —

[~ This Border - ~RefBorder - —Ref Cons RefBorder | —RefCons
& Left) Left None v & Left None ¥ o
€ Centre | Centre € Centre
 Righit = Right: Ds: [0 Righit Ds: [0
Vertical Shift Left Spec — Vertical Shift Right Spec —
[~This Border | ~RefBorder - —Ref Cons ~RefBorder | —Ref Cons
i Top Top lone v i Top lone ¥
€ Centre | Centre € Centre
& Eottomn | |) Battom | Ds: [0 & Bottom | Ds: [0
\ Update | New Matrix | Reset Quit

1] | i

The DCD for the matrix toy program is a little more complex than the DCDs in the previous
examples. To make the DCD easier to read, it is split up into four sheets. Only the features not
explained in the previous examples will be shown here.

The DCD features a mixture of statically and dynamically created domains (these correspond to
the creation of class instances in the implementation). The blue thick connectors indicate that the
domain at the arrowhead is statically created, typically as a subcomponent of the source domain.
So, before the program begins, UserlFace creates uifMainUserlF automatically as a
subcomponent, and CoreData also creates cdMODefData as a subcomponent. The thick green
connectors indicate that the domain at the arrowhead is dynamically created on demand in the
program. In this DCD, MatObjDef is deleted (indicated by the thick red connector with a cross
as the arrowhead) each time before a new instance of it is created.

The passage labelled 2: 6 (near the top-right of the diagram) has a repeated step symbol (see
Repeated Step Symbol under 2.1.6_Control Point Channel). A control point on that passage
repeatedly moves from CoreData to MainDP an unspecified number of times before moving
along passage 2:7.

Near the middle of the DCD, there is a supplied domain connector (see 2.1.9_Supplied Domain
Connector) with the passage tag reference {1:8} (see Passage Tag Reference Format under
2.1.15_Passage Tags and References for details). The passage tag reference refers to passage
tag 1:8. So, after a control point moves along passage 1:8 to uifMainUserlF, a reference to the
whole of cdMODefData is supplied to uifMainUserlF as indicated by the supplied domain
connector. Normally the reference is temporary, but in this DCD, there is also a reference
domain link with the same passage tag reference {1:8} (see 2.1.11_Reference Domain Link).

The reference domain link creates a persistent reference from some data in uifMainUserlF to the
whole of cdMODefData.

Sheet 2 of the DCD represents some details of operational modes 1 and 3 that are not shown in
sheet 1 so that it would not appear too cluttered. In sheet 2, passage 3:1 corresponds to passage
3:4 on sheet 1 (3:1[@1:4]). Also, in sheet 2, passage 1:1 corresponds to passage 1:18 on
sheet 1 (1:1[@1:18]).

3 DCD Examples

Operational Mode 1 (Intialisation)

11
Create the main dialog boxbut do not display it.

Create and set up the main dialog box.
REF: @NewDialog()
OUT: dialog box ID, uifResFile, DIS_MUI

13
Show the main dialog box.
REF: uifShowMainUIF ()

14
Start the main dialog box. Wait until user quits.
REF: @StartDialog()
OUT: true

15
Initialise the core data.
REF: miflnitialise()

16
Get the matrix object definition data reference.
REF: cdGetMatObjDefData()
IN: cdMODefData {ref)

17
Set the matrix object definition data reference to the dialog box.
REF uifSetMatObjDefData()
OUT: cdMODefData {ref)

18
Set the matrix object definition data reference.
REF: muiSetMatObjDefData()
OUT: cdMODefData {ref})
DST: muiMatObjDefData = cdMODefData

9
Create the drawing plane and an emply invisible VIEW for
displaying the matrix object
REF: cdinitialise()

1:10
Create the drawing plane
REF:vis_DPlane()
DST: @dpSetMseBtnFnt{) // Set the mouse button handler.

111
Create the main VIEW.
REF: vis_ VIEW()
DST: @vSetCloseVIEWFnt() // Define and set the close
button handler.

112
Create new matrix object definition data.
REF: moddNewMODefData()
‘OUT: default num rows, defauk num columns
DST: Reset the constrainer data to default

113
Create the matrix object component
REF: vis_MatObject()

114
Delete the matrix object definition component
REF: @visDelete()

115
Create a new matrix object definition component.
REF: vis_MatObjDef()
OUT: data from cdMODefData

118
Initialise the constrainer selection module
REF: uifinitConsSel()

117
Create the drawing plane and a VIEW for displaying the
consirainer selection "buttons”
REF: cslnitialise()

118
Create the drawing plane
REF: vis_DPlane()
DST: @dpSetMseBtnFnt{) // Set the mouse button handler.

1:19
Get the IEW |D for the consirainer module
REF: uifGetCSVIEWD()
IN: VIEWID

1:20
Get the VIEW |D for this constrainer module
REF: csGetVIEWID()
IN: VIEWID

121
Wait for the user to quit the program
REF: Before retum from @StartDialog()

3.4 Matrix Object Toy 42

ur _j?l 291 {18}
L S@4:7: l

33
32 s | 1s
116 | 2:2 355
TR FYY y
Dialog Box 1 . . §
I Event Processing [AH{ uifMainUserlF] {1:8 n:dMODefDalzJ
T

i

MainDP _}-1 15 ey

112 Ll

uifConsSelect

118

(—SneetZz Ty
| Cons Selection

I MainVIEW

MatObjDef I MatObj :
Sheet 1
- . - . O i Mode 1 0 tional Mode 3 (New Matrix Object)
‘ UserlFace | | uifConsSelect ‘
([tshean |_ g fsheet 11 31)
Create the drawing plane Create new matrix object and
? Ll@i18] REF: 1@1:18 defintion components.
31[@14] REF:3@1:4
12
Create the VIEW. 32
REF: vis_VIEW() Delete the matrix definition object
REF:13
13

CSMatObjDef

Sheet 2

CSMatObj

Delete the matrix definition object.
REF: @isDelete()

14
Delete the matrix object.
REF: @visDelete()

15
Create a new matrix definition object
REF: vis_MatObjDef()

16
Create a new matrix object
REF: vis_MatObject()

33
Delete the matrix object
REF: 14

34
Create a new matrix definition object.
REF:1:5

35
Create a new matrix object.
REF: 1:6

Operational Mode 2 (Process)

21
Store the dialog box field data into the
matrix object definition data
REF:_muiStoreMatObjD efVals()
OUT: dialog box data

22
Update the matrix object layout
REF: miUpdateLayout()

23
Update the matrix object layout.
REF: cdUpdatel ayout()

2:4
Delete the matrix object definition
compenent
REF:1:14

25
Create a new matrix object definition
component
REF:1:15

2:6
Create exira images if required
REF:_cdNewContimage()
OUT: index

7
Aitach the matrix object definition to the
matrix object, and update the matrix
object with the current object list.
REF: @matoAttachDef(),
(@matoGObjDList
OUT: cdMatObjDefID, cdContGObjCIDs

Operational Mode 3 (New Matrpx Object)

31
Create new matrix object definition data
REF: moddNewMODefData()
OUT: num rews, num columns
DST: Reset the constrainer data to default

32
Recall the matrix object definition data to
the dialog box fields.
REF:_muiRecMatObjDefVals{)
IN: matrix object definition data.

33
Create new matrixobject and definkion
components
REF: uiftl ewMatObj()
OUT: num rows, num columns.

34
Create new matrixobject and definiion
mmpnnems
REF: csNewMatObj()
OUT num rows, num columns:

35
Update the matrix object layout.
REF:2:2

36
Update the matrix object layout.
REF:2:3

37
Delete the matrix obje ct definition
component
EF:1.14

38
Create a new matrix object definition
component.
REF: 1:15

39
Create extra images if required.
REF:2:6

3:10
Attach the matrix object definition to the
matrix object, and update the matrix
with the current object list
REF: 2.7

Sheets 3 and 4, below, represent operational modes 4 and 5, respectively, of the DCD. Notice

that passage 5:7 of sheet 4 is referred to from sheet 1 by the passage tag 5@4:7.

3 DCD Examples

3.4 Matrix Object Toy

130 csSDP

| cdMODefData

[AII domains are defined in Sheet 1.]

Sheet 3

ur
Dialog Box
Event Processing

52

Operational Mode 4 (Constraner Selection)

41

4:2

43

Select the specified constrainer.

REF: mifSelectCons()

OUT: goConsMNum

IN: bool

SRC: Highlight the current container object (selected by the user).

Select the specified constrainer.

REF: uifSelectCons()

OUT: constrainer number (goC onsMNumy).
IN: bool

Select the specified constrainer.

REF: muiSelectCons()

OUT: constrainer number (goC onsNum).

DST: dialog box field values comect (_muiCheckFiek s()) 7
bool = true, 4:3a1 : bool =false

IN: bool

4:3a1

Store the dialog box field data into the matrix object definition data.
REF: _muiStoreMatObjD efVals{)
OUT: muiCurConsMum

4:3a2

UserlFace

Wi

CoreData 53

i}
\

Eﬂdl domains are defined in Sheet 1.J

Sheet 4

uifConsSelect

56

CSVIEW

O

Recall the matnx object definition data to the dialog box fields.
REF: _muiRecMatObjDefVals{)

OUT: constrainer number (goC onsNum).

IN: matrix object definition data.

SRC: muiCurConsMum ;= constrainer number (goC onsNum).

Operational Mode 5 (Quit)
D525 51
Delete the main VIEW.
REF: mifDelete MIEVW)

52
Delete the VIEW if it exists_
REF: cdDeleteVIEVW)

53
Delete the VIEW.
REF: @visDelete()

54
Delete the constrainer selection VIEW.
REF: uifDel CSVIEVW)

55
Delete the constrainer selection VIEW.
REF: csDelVIEVW)

56
Delete the VIEW.
REF: @visDelete()

57
Releases dialog box event processing.

The whole DCD above for the matrix toy program is quite detailed. The DCD designer decides

43

how many sheets to use for a DCD and what to put on them. For example, the DCD above could
have been constructed to show each operational mode in its own separate sheet. Or, even

designed with more than one sheet for a given operational mode, as was done for operational

modes 1 and 3. If a DCD is created in a diagrammatic software application program with layers,
then each operational mode can be put into its own layer.

Appendix A

Software Architectures

A.1 Introduction

The architectural structure of a computer program or software system is the most important factor
in determining the adaptability of that program or system for future enhancements. Most
software is intended to be enhanced and modified to meet new circumstances. Attempting to
modify a poorly structured piece of software usually results in ad-hoc complex structures that
become difficult to enhance further. Such unnecessarily complex structures also promote
unpredictability in the software design, which typically results in software malfunctions.

However, creating an appropriate architectural structure for a computer program or software
system is not a straightforward process. The optimal structure depends on knowing how the
software is going to be modified in the future. Such knowledge is not typically available, with
the result that the optimal structure cannot easily be determined in advanced.

Despite not knowing the future trajectory of software enhancements, it is possible to specify an
architectural structure for computer programs that will be reasonably stable for any future
enhancements. Such a structure is based on the hardware bus-line architecture, and has the same
advantages of being able to add new components with minimal effect on the existing structure. In
this document, that architectural structure for software is called the “bus-line interface”
architecture. That structure is compared with the typical structure used in software design called
the “direct access” architecture, which is not so versatile but is simpler in design (at the
beginning).

The DCD of the two architectures will be illustrated in the following sections based on the same
hypothetical piece of software that modifies the text of a graphics object via a dialog box. The
properties of the graphics object are also stored in a component of the software.

A.2 Direct Access Architecture

The Direct Access architecture is a typical software design architecture where various software
components access data in other components directly. Designing a software system with such an
architecture does not require much foresight — components can be created and accessed as the
need requires.

Operational Mode 1

h 1:1
Show Dialog Box.

1:2

. Get and Replace Text.
I Dialog Box I IN- text

SRC: Replace text.
size changed ? 1:2a1.

Y, 1:2a1
Store Size.
OUT: size

1:3
Store Text.
OUT: text

The DCD above uses the direct access architecture. It is simpler, but relatively less versatile.
For example, the Graphics Object domain directly accesses the Core Data and Dialog Box
domains. To use the Graphics Object domain in a different application program, the domain
usually needs to be modified to remove the access to the other two domains. Also, if the Dialog

Appendix A: Software Architectures A.2 Direct Access Architecture 45

Box domain is changed to a different domain, the Graphics Object domain will also need to be
modified to communicate with that new domain. With progressively more enhancements, the
complexity of the architecture increases greatly, resulting in a more ad-hoc structure which
becomes difficult to change. This architecture does not easily allow the swapping in and out of
domains at run-time if the access to those domains is embedded in other domains.

The major disadvantage of the direct access architecture is that the complexity of the architecture
increases rapidly out of proportion as new modifications are made. There is also an element of
arbitrariness in choosing how to access certain domains. For example, if a particular domain
needs to access the data in another domain, it may do that directly, or it may do that through a
third, or even a fourth, domain. As a result, there is no general scheme by which data is accessed
by one domain from another.

Another disadvantage of the direct access architecture is that it is difficult to use a particular
domain in another application program without needing to modify a copy of that domain to
remove access to all the original connections to it. In other words, in a complex direct access
architecture, the data domains cannot be easily reused in other application programs because
those domains are specifically integrated into the original program.

The direct access architecture is suitable for simple software with only a few components, where
the software is not going to be enhanced in the future. The Noughts and Crosses (tic-tac-toe)
program shows an example of a direct access architecture (see 3.3_Noughts and Crosses).

A.3 Bus-line Interface Architecture

The Bus-line Interface architecture is a software design architecture consisting of a single
interface component where all other major components have access to each other only via that
interface component. Designing a software system with such an architecture requires some
foresight for how the system may optimally evolve in the future.

(Main Interface

B R S

1:3
Graphics Object Dialog Box

Operational Mode 1 Operational Mode 1 (continued)
11 1:4a1
Replace Text Get New Size
IN: size
1:2
Show Dialog Box 1:4a2
Put Size
13 OUT: size
Get Text
IN: text 15
Put Text
14 OUT: text
Replace Text
OUT: text

IN: size changed (bool).
changed = true ? 1:4a1.

The DCD above uses the bus-line interface architecture. Main Interface is the bus-line interface
component. The architecture is more complicated, but also relatively more versatile. For
example, the Graphics Object domain does not directly access any other (non-interface) data
domain, and can therefore be used in a different application program with no (or very little)
change. Also, the Dialog Box domain can be changed to a different domain without needing to

Appendix A: Software Architectures A.3 Bus-line Interface Architecture 46

modify other domains; only parts of Main Interface may need to be modified. With
progressively more enhancements, the complexity of the architecture does not increase much.
Also, the bus-line interface architecture allows different versions of domains to replace existing
ones at run-time, for example, when swapping one project to another, different instances of some
domains need to be swapped for the new project. This can be done at the bus-line interface.

In the bus-line interface architecture, sub-components that are exclusive to parent components
can have access to each other via the parent component. In this case, the parent component acts
as a kind of mini bus-line interface for the sub-components.

A major advantage of the bus-line architecture is that, if designed with foresight, the complexity
of the architecture does not increase rapidly as new modifications are made. Each major domain
can access any other domain only through the bus-line interface. Consequently, there is less
arbitrariness in choosing how to access other domains. For example, if a particular domain needs
to access the data in another domain, it can only do that through one interface. As a result, it is
easy to add additional domains to the architecture.

Another advantage of the bus-line interface architecture is that it allows the design of each
domain to be independent of other domains. This makes it is easy to use any major domain in
another application program without needing to modify a copy of that domain, except for the
interface code with the bus-line interface. The consequence is that any major domain can easily
be reused in other application programs also having the bus-line interface architecture.

The bus-line interface architecture is suitable for software with more than a few components,
where the software is going to be enhanced in the future.

Examples of the Bus-line Interface Architecture

1. The following DCD is of a tutorial program that illustrates the VIS (Visual Interaction System)
aspect of the ETAC™ programming language. Details of the eight operational mode tables are not
shown. Also, the details of the Main Frame Management component are not shown. Main
Interface is the bus-line interface.

The eight operational mode titles are as follows: Initialisation (1), Next Tutorial (2), Lesson
Request (3), Specified Lesson (4), Run Script (5), Reference Topic (6), Welcome Page Click (7),
Help (8).

[Main Interface

I

1:6,27,
3:4,4:4,
7:6

)
I l $ ' 51 3:1 < e?> | s i :; *l ;\y
[ngm] [nrawing Mmﬂga] l Wain ;;:221 | [;::::];r] (File Access) [Core Data]

2. The following DCD is of a key-code toy program that presents the details of keyboard key
presses and releases on a window. The program is intended to be implemented in the ETAC
programming language using VIS (Visual Interaction System). The details of the five
operational mode tables are not shown. The major components are the Program, UserlFace,
and CoreData domains. Communication between those domains occurs via MainlFace, which is
the bus-line interface. Notice that the domains vis_DPlane, vis_VIEW, IntroObj, and KeyObj
are sub-domains created dynamically through the UserlFace domain. Also notice that
communication between the sub-domains and the major domains occurs via the bus-line interface,
not directly.

2-3 4:2al,
- M . 2633

The five operational mode titles are as follows: Initialisation (1), Key Event (2), Previous
Event (3), Next Event (4), Clear Event (5).

Appendix A: Software Architectures

A.3 Bus-line Interface Architecture 47

MainlFace

4:228, 2:6, 3:2a4, 4:2a4
A

5:5 LS

vis

—>| IntroObj }
:' KeyObj =

T Yo
28, Evis_nplane (.

1\ 3 Lo
| —
VIEW 2: 1

1:6

)

3. The following DCD is of a basic calculator program that has two storages and the change sign,
reciprocal, and parentheses buttons. The four arithmetical operators obey the usual precedence —
multiplication and division before addition and subtraction. The program is intended to be
implemented in the ETAC programming language using VIS (Visual Interaction System). The
three operational mode tables are not shown. The major data domains are shown in the row
below the bus-line interface, MainlFace. Communication among those domains occurs via
MainlFace only. The other domains are sub-domains created dynamically (except for GFnts).
Communication between the sub-domains and the major domains occurs via the bus-line
interface, not directly.

[

MainlFace

¥ ? Al ¢9 2 ? Y2 R YY%
14 114 36 wza | A 18 L Hlad 3.3 3.4 T 12
4:1b4 2lpl TP TR : 3.5
11 13 l ‘
O O
Program Layout (Display J (O perators J AboutBox

| vis_DPlane '
| MainVIEW '

116}
16

L3l

3>
+| GFnts

?

13

l N
P

g
110 | 103
{110} 1 41:13}

Appendix A: Software Architectures A.3 Bus-line Interface Architecture 48

4. The following DCD is of a demonstration program that draws any number of polylines in a
window. The drawing in each window can be saved to a file, and reloaded when desired. The
program is intended to be implemented in the ETAC programming language using VIS (Visual
Interaction System). The details of the six operational mode tables are not shown. The major
data domains are shown in the row below the bus-line interface, MainlFace. Communication
among those domains occurs via MainlFace only. The other domains are sub-domains created
dynamically. Communication between the sub-domains and the major domains occurs via the
bus-line interface, not directly.

The six operational mode titles are as follows: Initialisation (1), Mouse Click (2), Mouse Double-
click (3), New Drawing (4), Open Drawing (5), Save Drawing (6).

The three pseudo data domains (see Pseudo Data Domains under 2.1.1_Data Domains) Display
Manager, Path Manager, and File Manager are represented in their own diagram sheet for
convenience (and for illustration purposes in this case), even though they are logically part of the

main sheet <Sheet 1> — all the sheets could have been combined into the main sheet.
[MainlFace]
| |T| | 4:3, 2333T 4-4 T 63 12
5da2 5.3
51 41 2:1 3:1 6:1
Program 1:3 Il Display Manager I | Path Manager I
Sheet 1
I'd ™
, , MainlFace |
I MainlFace - {sheet 1) -
L {Sheet 1} J (P
4:1[@14] 6:1[@1-3]
5:1[@1:21
3:1[@1:1] [@1:1]
2:1[@1:1] fmlg 1] i 61@1 1]
Program L1[@1:3] (vis_DPlane 1:2
| (shest1) J
Sheet 2
Sheet 4
- - -,
| MainlFace ‘ vis_DPlane
\ ? (Sl'leet'l..l? J | (Gheet 2} J
@3 | #1@ien | G
5:1[@1:2a2]
3:1[F1:3]j 5;2f1:233]
A)
{2:1al,5:3} Current Polyline e L
PathMgr §erlal. 53w\ (vis_GObject) J vis_Lineltem
T 2:2 ilaﬂ-
Sheet 3

Appendix B

Developing Programs Using DCDs

B.1 Introduction

A DCD (Data Control Diagram) is not only useful for showing the essential functioning of a piece
of software, but is also useful in designing adaptable software.

The process of designing an application program involving a DCD can be divided into a number
of steps. Ideally, the steps would be performed linearly without review. However, given the
nature of programming languages, and other factors, the steps may need to be reviewed and
modified any number of times as required.

The following five steps can be performed in designing an application program using a DCD.

1. Overview of the application. This is a written top-level overview of the application
program from the user’s perspective.

2. User’s specifications. This is similar to a user’s manual but with more detail, and describes
the details of the application from the user’s perspective. There are no programming
concepts in this specification.

3. Design architecture. This specifies the architecture of application in terms of a DCD. The
architecture is determined by the complexity and future adaptability of the program.

4. Implementation. This is the coded implementation of the application, beginning with an
outline code first created from the partially designed DCD. The DCD can then be
completed. The rest of the implemented code can then be created from the completed DCD.

5. Testing. This can be aided by the DCD.

The process of designing an application program using a DCD will be illustrated in this Appendix
by an example. The program is a demonstration program that allows the user to draw any number
of polylines in a window; the program is written in the ETAC™ programming language using VIS
(Visual Interaction System).

B.2 Overview of the Application

A well designed application program needs to begin with some kind of overview of what the
program is to accomplish from the user’s perspective. The application name should also be
decided at this stage, which, in this illustration, will be called PolylineDemo.

The following is the overview of PolylineDemo.
e The application program allows the user to draw any number of polylines in a window (called
a “VIEW” in the ETAC programming language using VIS).
e Each polyline will have a default colour and width.
e There will be only one main window.
e The drawing in the window can be saved to a file and reloaded when desired.
e Any individual polyline can be moved and resized by the user but cannot be deleted.
e All the polylines in the window can be deleted at once.
e The window can be resized by the user.

e The window will have scroll bars and the user can scroll and zoom the drawing in and out.

This overview gives an idea of what the program is about.

Appendix B: Developing Programs Using DCDs B.3 User’s Specifications 50

B.3 User’s Specifications

At this stage, the full details of the user’s interaction with the program need to be specified. This
is similar to a user’s manual but with more detail. Also, the exact interface appearance of the
visual elements of the program needs to be specified. The overview of the program can be used
as a basis for this stage. The actual user’s manual can be based on this user’s specifications.

For PolylineDemo, the exact colour and thickness of the polylines needs to be specified. How the
polylines are created needs to be specified. How the window is to be cleared needs to be
specified. How the polylines are saved and loaded from a disk file needs to be specified. How
the user is to move and resize a polyline needs to be specified. The mouse buttons that the user is
required to press to scroll and zoom the image needs to be specified. And so on.

The polylines will be 0.2 units thick and black. Each polyline will be created by the user
sequentially clicking the left mouse button to define the polyline vertices; the last point on the
polyline will be indicated by a double-click; the next click will begin a new polyline. The
window will be cleared (and all polylines deleted) by the user pressing the Ctr1+N keys on the
keyboard. The current polylines are saved to a file by the user pressing the Ctr1+S keys. A
polyline file is read into the application by the user pressing the Ctr1+0 keys. Moving and
resizing polylines features are built into VIS, as are scrolling and zooming of the drawing.

In general, a mock-up of the program should be created to test the specifications, even if the
mock-up is just a number of graphical images.

B.4 Program Architecture

This is the stage at which the DCD is created. A DCD designer may consider a few proposals for
the architecture before a final one is accepted. The DCD need not be completed before the
implementation stage begins. For example, the DCD may be specified just enough for an
implemented outline code to be created. The programming language used for implementation
may need to be taken into account for the architecture. PolylineDemo will be implemented in the
ETAC programming language using VIS (Visual Interpretation System).

For simple programs that are unlikely to change, the direct access architecture can be used.
However, the bus-line interface architecture will be used for PolylineDemo. The reason for this is
that the program can be used as a base for a more complex program with many more features,
therefore the program needs to be adaptable.

The DCD for PolylineDemo needs to include the diagram itself, along with the appropriate
operational modes, and also the class diagrams for the major class instances. The outline of the
source code can then later be created from this information.

First of all, the major data domains need to be decided. Of course, being a bus-line interface
architecture, the bus-line interface domain, MainlFace, needs to exist. The program must begin
somewhere, so a Program domain needs to exist as well. Graphics application programs are
typically designed with a main application window within which the graphics window exists. The
main window is usually called a “frame window”, and handles the menu, status bar, user panels,
etc. However, the PolylineDemo program will have the graphics drawn directly to the client area of
the frame window. So, there needs to be a domain for the main window called FrameMgr (frame
manager) in PolylineDemo to handle user interactions. Each polyline consists of a number of
points that need to be stored and managed to create the graphics to display. The management of
the polylines is relatively independent of the frame window, so will have its own domain,
PathMgr (polyline path manager). The polylines in a window can be written to a file, and also
loaded from a file. Therefore, a domain, FileMgr (file manager), to manage the disk input and
output needs to be created.

So, we have MainlFace, Program, FrameMgr, PathMgr, and FileMgr as the major data
domains. MainlFace is responsible for the communication among the other major data domains,

Appendix B: Developing Programs Using DCDs B.4 Program Architecture 51

as required for the bus-line interface architecture. Program is responsible for the initialisation of
the major domains. FrameMgr is responsible for the user interaction with respect to the main
window. PathMgr is responsible for creating and storing path information and displaying the
polyline paths. FileMgr is responsible for transferring the polyline data to and from a disk file
and obtaining the file path from the user.

The operational modes can be defined, which may require the creation of other data domains.
For most application programs, an operational mode to initialise the data domains of the
application is required. Most other operational modes are based on user events. There is a
mouse click event, mouse double-click event, a window clearing event, a file loading event, and a
file saving event. The following operational modes can therefore be defined for PolylineDemo:

Operational Mode 1 (Initialisation)
Operational Mode 2 (Mouse Click)
Operational Mode 3 (Mouse Double-click)
Operational Mode 4 (New Drawing)
Operational Mode 5 (Open Drawing)

AN L AW

Operational Mode 6 (Save Drawing)

The passages and operational mode tables can be created, at least as a first draft. The DCD, so
far, is shown below.

[MainlFace

1:1
O

The six operational mode tables, so far, are shown below.

Operational Mode 1 (Initialisation) Operational Mode 2 (Mouse Click) Operational Mode 3 (Mouse Double-click)
11 21 31
Initialise. Append a new point to the polyline. End current polyline.
REF: miflnitialise() REF: mifNewPoint() REF: mifEndPath()
OUT: point.
3:2
2:2 End polyline.
Append new polyline point. REF: pmEndPath()
REF: pmNewPoint()
OUT: point

DST: Save and display polyline.

Operational Mode 4 (New Drawing) Operational Mode 5 (Open Drawing) Operational Mode 6 (Save Drawing)
41 5:1 6:1
New drawing. Open drawing. Save drawing.
REF: mifNew() REF: mifOpen() REF: mifSave()
42,53 52 6:2
Clear display. Open file. Get path points for all paths.
REF: pmClear() REF: fmOpen() REF: pmGetPaths()
IN: file data (set of paths). IN: set of paths.
4:3
Reset file path. 53 6:3
REF: fmResetPath() Clear display. Save paths.
REF: 4:2 REF: fmSave()
QUT: set of paths.
54
Create and display new path.

REF: pmNewPath()
OUT: path points.
NOTE: Repeat for each path.

At this point, the class diagrams of the major domains can also be created, as shown below.

Appendix B: Developing Programs Using DCDs B.4 Program Architecture 52

MainFace PathMgr FileMgr
Main Interface Manages the visible path in the VIEW. Manages file data.
mifInitialise() pmlewFPoint (in pEVal:dec,in p¥Val:dec) fmOpen () : seq
Initialises the pragram. Appends a ne wpalyline paint te the current path. Opens a file for leading.
Return:
mi £Hew) pmEndPath {) Sequence of path points.
Creates a new drawing. Ends the polyline. 7 PELT pOInEs.
X fmSave (in pPathPoints: seq)
mifOpen()] pmClear (} Saves paths.
Opens a ne wdra wing. Clears the display. pPathBaints:
mifSave) pmNewPath (in pPointSeq:seq) Sequence of path points.
Saves the drawing. Creates and displays a new path. fmResetPath ()
PointSeq.
mi fewBoint (in pKPos:dec, in pYPos:dec) §emm§ of path points. Resets the file path.

Appends a ne wpoint to the polyfine.

pmGetPaths() : seq

mifEndPath(} Gets a list of the current polylines.

End's the curmrent palyline.

The DCD, so far, can be considered complete, and can be used to implement PolylineDemo in most
graphics programming languages. However, since PolylineDemo is to be implemented in the
ETAC programming language, further sub-domains can be created specific to that language. In
this illustration, the sub-domains belonging to PathMgr and FileMgr will be created.

In VIS of ETAC, drawings are displayed by the vis GObject component, which is a data object
that manages various graphics item sub-components like polylines. In VIS, a polyline is
represented by the vis_Lineltem component which is a sub-component of the Current Polyline
component. So, these two components can be created as sub-domains under the PathMgr
domain. In addition, it is convenient to have a dedicated domain, FileAccess, managed by
FileMgr, that merely reads from and writes to data files, converting the raw data to the
appropriate format for the file.

The DCD for the PolylineDemo program with the new domains is shown below.

MainlFace

(1

42 22 37 5
poP A R i

51 4:1 2:1 3:1 6:1

6:2

5:4 (57

bt
i

2lal, &6

Current Polyline .
[(vis_GObject) [F""'A‘:"E%)

2282, 57

vis_Lineltem

The six operational mode tables are shown below. Some passage tags were needed to be
renamed to account for the new domains.

Appendix B: Developing Programs Using DCDs

Operational Mode 1 (Initialisation)
1:1

Initialise.

REF: miflnitialise()

Operational Mode 2 (M Click)
2:1
Append anew point to the polyline.
REF: mifNewPaint{)
OUT: point.

2:2
Append new polyline point.
REF: pmMewPoint()
OUT: point
DST: new polyline ? 2:2a1.

2:2a1,56

Create new polyline graphics object

and make cument.
REF: vis_GObject()

2:2a2 57
Create new line item.
REF: vis_Lineltem()

Operational Mode 4 (Mew Drawing)

4:1
MNew drawing.
REF: mifNew()

4:2 54
Clear display.
REF: pmClear()
DST: Delete all polyline objects.

4:3
Reset file path.
REF: fmResetPath{)

4:4
Reset file name.
REF: faResetFName()

Operational Mode 6 (Save Drawing)

6:1
Save drawing.
REF: mifSave()

6:2
Get path points for all paths.
REF: pmGetPaths()
IN: set of paths.

B.4 Program Architecture

Operational Mode 5 (Open Drawing)

5:1
Open drawing.
REF: mfOpen()

5:2
Open file.
REF: fmOpen()
IN: file data (set of paths).

5:3
Get file data from file.
REF: faRead()
IN: file data or NULL
SRC: Convert data to set of paths.

5:4
Clear display.
REF: 4:2

55
Create and display new path.
REF: pmNewPath()
OUT: path points.
MNOTE: Repeat for each path.

56
Create new polyline graphics object
and make cument.

2:3 5.
Append new polyline point. 63 REF: 221
EEI.:T Illzl_ianumt() Save paths. 5T

P REF: fmSave() Create new line item.
OUT: set of paths. REF: 2:2a2
Operational Mode 3 (Mouse Double-click) 6:4
Wite data tofile.
31 REF: faWite()
End current polyline. SRC: Convert paths to raw data.
REF: miEndPath() OUT: file data.
3:2
End polyline.
REF: pmEndPath(}
The class diagrams are shown below.
MainFace PathMgr
Main Interface Manages the visible path in the VIEW.

mifInitialise ()
Initialises the program.

mi £New ()
Creates a new drawing.

mif0pen ()
Opens a ne wdra wing.

mifSave ()
Saves the drawing.

Appends a ne wpaint to the polyline.

mi fEndPath ()
Ends the curmrent polyline.

miflewPoint (in pXPos:dec,in p¥Pos:dec)

pmlewPoint (in pXvVal:dec,in p¥val:dec)
Appends a newpolyline point to the current path.

mmEndPath ()
Ends the polyline.

pmClear ()
Clears the display.

pmlewPath (in pPointSeq: seq)
Creates and displays a newpath.
pPaintSeq.
Sequence of path points.

pmGetPaths () : seq
Gets a list of the current polylines.

FileMgr

Manages file data.

FileAccess

Accesses a disk file.

fmOpen () : seq
Opens a file for loading.
Return:

Sequence of path points.

fmSave (in pPathPoints:seq)
Saves paths.
pPathPaints:
Seguence of path points.

fmRezetPath()
Resets the file path.

_lfaFileName: str = ""
Contains the cumrent file name.

faRead () : mem|?
Gets data from the file.
Return:
Rawdata.

faWrite (in pMem:mem)
Writes data to the file.
eMem:
Rawdata to write.

faResetFName ()
Resets the default file name.

53

The DCD above can potentially be constructed in more (or less) detail. It is up to the DCD
designer to decide how much detail and what structure a DCD will have. The choice on the
amount of detail and the structure of the DCD should depend on the nature of the program itself
and its projected evolution.

Appendix B: Developing Programs Using DCDs B.4 Program Architecture 54

After the PolylineDemo program is created, it can be modified using the DCD. For example, if cut,
copy, and paste features are needed for the program, an appropriate data domain can be hooked
onto the bus-line interface (MainlFace) for that purpose; the domain would then communicate to
the other domains through that interface. Similarly, if a do\undo feature is required later, a
suitable domain, hooked to the interface, can be defined for that purpose. Using the DCD to
design the new features allows the DCD designer to quickly inspect the effects of those features
on other domains and the program as a whole without needing to read complex source code where
the effects of those features on different parts of the program can be overlooked.

B.S Implementation

This is the stage at which the program source code is created. The DCD, along with the class
diagrams, can be used to directly create a source code outline. All that needs to be done with that
outline to obtain a workable program is to fill in the details.

The source code outline for the PolylineDemo program, written in the ETAC programming
language, is shown below.

start_local;
ArgStr :-; [* Assign the stack argument string. *]

[* Main Interface *]
MainIFace :- data:
{
[* Initialises the program. *]
mifInitialise :- fnt:()
{
¥

[* Creates a new drawing. *]
mifNew :- fnt:()

{
s

[* Calls: pmClear() *] [* Calls: fmResetPath() *]

[* Opens a new drawing. *]
mifOpen :- fnt: ()
{

}s

[* Calls: fmOpen() *]

[* Saves the drawing. *]
mifSave :- fnt:()

{
s

[* Calls: pmGetPaths() *] [* Calls: fmSave() *]

[* Appends a new point to the polyline. *]
mifNewPoint :- fnt:(pXPos[*dec*] pYPos[*dec*])

{
}s

[* Calls: pmNewPoint(). *]

[* Ends the current polyline. *]
mifEndPath :- fnt:()

{
s

[* Calls: pmEndPath() *]

+s

Appendix B: Developing Programs Using DCDs B.5 Implementation 55

Appendix B: Developing Programs Using DCDs B.5 Implementation 56

[* Accesses a disk file. *]
FileAccess :- data:

{

_1faFilename :- ; [* Contains the current file name. *]

[* Gets data from the file. *]
faRead :- fnt:() [* => mem|? *]

{
}s

[* Writes data to the file. *]
falWrite :- fnt:(pMem[*mem*])

{
}s

[* Resets the default file name. *]
faResetFName :- fnt: ()

{
g
}i&

[* PROGRAM *]
fmInitialise();

end_local;

The program source code will not be developed any further in this illustration.

B.6 Testing

Designing and implementing software is a conceptually demanding process, and inevitably leads
to errors. Testing a piece of software to make sure that it performs in the intended way is
therefore necessary (at the time of this writing). A DCD representing the essence of how the
software functions would make the testing process more efficient and accurate.

The various operational modes corresponding to a piece of software can be tested separately.
Each step of an operational mode can be verified in the software. For example, step 6:2 in the
DCD for PolylineDemo obtains all the polyline paths for subsequent writing to a file. Now, in the
DCD, that step references the function pmGetPaths (), so a breakpoint can be put into the source
code just after that function is called. Looking at the DCD, the function is called at the step
before 6:2, that is to say, it is called at step 6:1. Step 6:1 references the function mifSave (),
so the breakpoint would be placed in that function in the source code. When the breakpoint is
triggered during testing, the return value of pmGetPaths () can be verified to make sure that all
the polylines have been correctly returned by the function.

If the program does not operate in the expected way, the DCD is a very useful asset in locating
the problem in the source code. Debugging code can easily be placed in the bus-line interface
domain to monitor the communication among the other domains. The DCD is also used to predict
the effects of any changes made in the source code.

Glossary

A

active state (refers to a data control point)
A control point is in the active state when it is moving along a route. Short term: active.

B

block domain
A domain that causes an incoming control point to be blocked until a control point from a
specified channel enters the block domain.

See 1.2.6_Block Domain for details.

blocked state (refers to a data control point)
A control point is in the blocked state when it is waiting (not ready and not active) for an
appropriate event before it can become ready or active. Short term: blocked.

C

channel record
A description of the changes that a control point causes in its source and destination domains
as it moves along the channel connecting those two domains.

See 1.5_Channel Record for details.

child control point (in relation to a parent control point)
A control point spawned from the parent control point.

concurrent (refers to data control points)
Two or more control points that exist simultaneously are said to be concurrent.

See 1.4.2_Concurrent Control Points for details.

concurrent path group
A group of control paths that is designated to allow concurrent control points to move along
the paths of that group. No path can belong to more than one such group. Short term: path
group.

connector
A uniquely identifiable entity that associates any two domains (except for a link assignment)
for a defined purpose.

See 1.3_Connectors for details.

control gate
A feature of a control point channel such that, when a control point moves through that
channel, all other control points in the DCM become temporarily idle until that control point
returns to its source domain (the idle control points then become ready). Short term: gate.

control path
The set of all possible control point routes that a particular data control point can move
along. Short term: path.

Glossary 58

control point channel
A type of connector that associates a source domain and destination domain, allowing
control points to “move” from the source domain to the destination domain and back. Short
term: channel.

See _ for details.

control point route
A specified sequence of domains for which a particular control point is desired and permitted
to visit in the order presented in the sequence. A passage is specified between each pair of
domains. The start of the route is called the ‘origin domain’. Short term: route.

control point state
The state in which a control point is in at any one moment. The possible states are: active,
idle, ready, and blocked. Short term: state.

D

data control point
An imaginary entity that signifies changes in the data state of different domains at different
points in time. Short term: control point.

See 1.4_Data Control Points for details.

data control step
Indicates the movement of a data control point along a passage. Short term: control step.

data domain
An entity that contains data units, each having a range of possible values. Short term:
domain (only when the context is understood to imply a data domain).

See 1.2.1_Data Domain for details.

DCD
A shorthand for Data Control Diagram.

See 2_Data Control Diagram for details.

DCM
A shorthand for Data Control Model.

See 1_Data Control Model for details.

destination domain
One of the two domains that a connector associates. The type of connector determines which
of the two domains is the destination domain. Note that a link assignment does not have a
destination domain.

diagram sheet
A diagram sheet contains some part of the whole DCD. Short term: sheet.

See 2.3_Diagram Sheets for details

divider domain
An entity that allows new control points to be spawned from existing ones. Short term:
divider.

divider link
A connector that associates a wait domain and a linked-wait divider domain.

See 1.3.7_Divider Link for details.

Glossary 59

domain
A no-wait divider domain, wait divider domain, linked-wait divider domain, wait domain, or
block domain. Sometimes ‘domain’ refers to a data domain when the context is understood
to mean a data domain.

See 1.2_Domains for details.
domain deletion connector

A type of connector that indicates that a control point in the source domain deletes the
destination domain.

See 1.3.4_Domain Deletion Connector for details.

dynamic domain connector
A type of connector that indicates that a control point in the source domain creates the
destination domain.

See 1.3.3_Dynamic Domain Connector for details.

idle state (refers to a data control point)
A control point is in the idle state when it is not active and not ready and not blocked. Short
term: idle.

incoming channel (in relation to a domain)
A control point channel whose destination domain is the domain being referred to.

incoming control point
A control point on an incoming channel.

incoming data
The destination domain data copied by a control point as it returns from the destination
domain to the source domain. The copied data is passed to the source domain. See 1.4_Data
Control Points for more information.

L

link assignment
A connector that indicates the creation of a reference domain link between two data domains.

See 1.3.8 Link Assignment for details.

linked-wait divider domain
A divider domain that is linked to one or more wait domains. Short term: linked-wait divider.

See 1.2.4 Linked-wait Divider Domain for details.

N

no-wait divider domain
An entity that allows new control points to be spawned from existing ones without waiting
for the new control points to return. Short term: no-wait divider.

See 1.2.2_No-wait Divider Domain for details.

Glossary 60

O

operational mode
Used in a DCD, an operational mode is a set of passages involved in a named operation or
unique number defined by the DCD designer. An operational mode is specified by a list of
passage tags and (usually) the operation name or unique number.

outgoing channel (in relation to a domain)
A control point channel whose source domain is the domain being referred to.

outgoing control point
A control point on an outgoing channel.

outgoing data
The source domain data copied by a control point as it moves from the source domain to the
destination domain. The copied data is passed to the destination domain. See 1.4_Data
Control Points for more information.

P

parent control point (in relation to a child control point)
The control point that spawns a child control point.

passage
A control point channel, dynamic domain connector, or domain deletion connector.

passage tag
Used in a DCD, a label on a passage to identify that passage.

See 2.1.15_Passage Tags and References for details.

passage tag reference
Used in a DCD, a reference to a passage tag associated with a reference domain link, link
assignment, or supplied domain connector.

See 2.1.15_Passage Tags and References for details.

R

ready state (refers to a data control point)
A control point is in the ready state when it is not currently active but can become active at
any moment. Short term: ready.

reference domain link
A type of connector that indicates that there exists a reference from the data in the source
domain to the destination domain.

See 1.3.6_Reference Domain Link for details.

S

source domain
One of the two domains that a connector associates. The type of connector determines which
of the two domains is the source domain.

spawn (refers to a data control point)
A data control point that creates a new, possibly independent, data control point.

See 1.4.1_Spawned Control Points for details.

Glossary 61

static domain connector
A type of connector that indicates that the destination domain is created automatically when
the source domain 1is created.

See 1.3.2_Static Domain Connector for details.

supplied domain connector
A type of connector that indicates that a reference to the source domain is temporarily
supplied to the destination domain.

See 1.3.5_ Supplied Domain Connector for details.

W

wait domain
An entity that causes an incoming control point to wait for the new control points created by
all of the associated /inked-wait dividers to return.

See 1.2.5_Wait Domain for details.

wait divider domain
An entity that allows new control points to be spawned from an existing one but waits for the
new control points to return before the parent control point returns.

See 1.2.3_Wait Divider Domain for details. Short term: wait divider.

	Preface
	Contents
	Document Conventions
	Introduction
	1 Data Control Model
	1.1 Data Control Model Definition
	1.2 Domains
	1.2.1 Data Domain
	1.2.2 No-wait Divider Domain
	1.2.3 Wait Divider Domain
	1.2.4 Linked-wait Divider Domain
	1.2.5 Wait Domain
	1.2.6 Block Domain

	1.3 Connectors
	1.3.1 Control Point Channel
	1.3.2 Static Domain Connector
	1.3.3 Dynamic Domain Connector
	1.3.4 Domain Deletion Connector
	1.3.5 Supplied Domain Connector
	1.3.6 Reference Domain Link
	1.3.7 Divider Link
	1.3.8 Link Assignment

	1.4 Data Control Points
	1.4.1 Spawned Control Points
	1.4.2 Concurrent Control Points

	1.5 Channel Record

	2 Data Control Diagram
	2.1 Symbols of a Data Control Diagram
	2.1.1 Data Domains
	2.1.2 Block Domain
	2.1.3 No-wait and Linked-wait Divider Domains
	2.1.4 Wait Divider Domain
	2.1.5 Wait Domain
	2.1.6 Control Point Channel
	2.1.7 Static Domain Connector
	2.1.8 Dynamic Domain Connector
	2.1.9 Supplied Domain Connector
	2.1.10 Domain Deletion Connector
	2.1.11 Reference Domain Link
	2.1.12 Divider Link
	2.1.13 Link Assignment
	2.1.14 Ellipsis Symbols
	2.1.15 Passage Tags and References
	2.1.16 Attention Message

	2.2 Description Text
	2.3 Diagram Sheets
	2.4 Operational Mode Tables
	2.5 Standard Interpretation

	3 DCD Examples
	3.1 Simple Calculator
	3.2 Reader and Writer
	3.3 Noughts and Crosses
	3.4 Matrix Object Toy

	Appendix A: Software Architectures
	A.1 Introduction
	A.2 Direct Access Architecture
	A.3 Bus-line Interface Architecture

	Appendix B: Developing Programs Using DCDs
	B.1 Introduction
	B.2 Overview of the Application
	B.3 User’s Specifications
	B.4 Program Architecture
	B.5 Implementation
	B.6 Testing

	Glossary

