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Abstract

Abstract

The purpose of this document is to prove positively and rigorously that there are no transfinite 
cardinal numbers, other than ℵ0, by showing that the traditional arguments of their existence are 

logically invalid, and proving that there is only the one transfinite cardinal number, ℵ0.

The definition of transfinite cardinal numbers depends upon the non-denumerability of the set of 
real numbers and Cantor’s power set theorem.  This document proves that the diagonal number 
“constructed” in the diagonal method, and the subset “constructed” in the power set argument are 
both self-contradictory under the condition of the antithesis, and consequently, cannot be used for
the claimed existence of transfinite cardinal numbers beyond ℵ0.

The document proves, with certainty, that the set of irrational numbers is equivalent to the set of 
rational numbers, using the irrational number version of Dedekind cuts, with the consequence that
transfinite cardinal numbers beyond ℵ0 cannot exist.



Preface

Preface

In the year 2007, I published a document on the https://www.victella.me website titled 
The Collapse of Transfinite Cardinals.  In that document I proved, rigorously, that Cantor’s 
arguments for the non-denumerability of the set of real numbers and the existence of higher 
transfinite cardinals were logically invalid, but I was still open to the possibility of the existence 
of those cardinals.  I abandoned interest in the subject since 2007, but certain events in 2024 
revived my interest.

I considered the notion of partitioning the unit interval into smaller and smaller disjoint sets.  It 
was obvious that, no matter how many times that the unit interval is recursively “split”, the 
number of disjoint sets will always be equal to the number of “splits”.  This reminded me of 
Dedekind cuts, which are a kind of “splitting” of the rational number line.  So I considered 
whether I could use the irrational version of Dedekind cuts to prove rigorously that the rational 
numbers and irrational numbers are equivalent.  And, not to my surprise, that was indeed the case.

In this document, not only do I definitely and rigorously prove that Cantor’s arguments are 
invalid, but also prove, using the irrational version of Dedekind cuts, that the higher transfinite 
cardinals do not exist  —  that the real numbers and all infinite sets are indeed denumerable.

The ideas in this document have been conceived entirely by me (a retired but non-practising pure 
mathematician) independently of any other work that may be out there, except, of course, for the 
standard mathematical definitions and theorems.

Victor Vella

Perth, Western Australia
15 March 2025
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Introduction

Introduction

A cardinal number indicates the number of elements in a finite set.  Cardinal numbers were 
generalised by Georg Cantor [1845–1918] to indicate the relative number of elements in infinite 
sets using the notion of equivalent sets.  Cantor believed, as do modern mathematicians, that the 
“size” of some infinite sets is greater than the size of others.  The different “sizes”, indicated by 
the cardinal numbers of those sets, are symbolised by ℵ0, ℵ1, ℵ2, and so forth.  Those cardinal 
numbers are called transfinite cardinal numbers as opposed to the cardinal numbers relating to 
finite sets, which are called finite cardinal numbers.  However, the basis for believing that 
infinite sets have different cardinalities is seriously flawed.  Moreover, it can be proven 
rigorously and conclusively that infinite sets do not   have different cardinalities.  The only 
transfinite cardinal number that can be admitted is ℵ0.

It is assumed that the reader has some familiarity with Cantor’s diagonal argument, and the 
argument for Cantor’s power set theorem.  It is also assumed that the reader is familiar with 
mathematical logic and has a proper   understanding of logical proofs and deductions involving 
quantifiers.  This document is written for mathematicians or readers who are mathematically 
proficient.

Also, in this document, the term “invalid” used in the context of logical arguments means “not 
abiding by the proper rules of logic” rather than the flawed and ill-conceived definition that 
logicians and mathematicians use.  “Invalid” in this document does not necessarily mean FALSE.

The first chapter proves in detail that the diagonal argument and the argument for Cantor’s power 
set theorem are invalid.  The second chapter proves rigorously that all infinite sets are 
denumerable.

1



1 The Diagonal Argument

1
The Diagonal Argument

1.1 Preliminaries
The principal argument for believing in the higher transfinite cardinals is the one based on 
Cantor’s diagonal argument.  That sloppy, intuitively-based argument uses Cantor’s diagonal 
method as its principal technique.  The diagonal method is invalid, as will be proven in this 
document using rigorous mathematical logic.  Furthermore, again using rigorous mathematical 
logic, this document will prove conclusively that all infinite sets are equivalent to the natural 
numbers, therefore proving that there are no more cardinal numbers beyond ℵ0.

The problem is with the generalised form of the diagonal method, which claims that it is possible 
for there to be an entity belonging to a set of all   such entities but different from each member of 
that set  —  the diagonal method used in the diagonal argument is just a specific case of that 
general method.  But, that general method is obviously self-contradictory, and consequently, so is
the diagonal method.  Cantor’s power set theorem also uses a specific case of that general 
method, and is therefore also self-contradictory.

It is actually impossible for there to be an entity belonging to a set of all such entities but 
different from each member of that set.  In mathematical logic, such a claim is written as follows.

∃r∈S (∀x∈S (r ≠ x)) (1)

The statement above says that there is a member, r, belonging to a set, S, such that for each 
member, x, of the set S (including   that member r), that r is different from x.  Now, since one of 
the x’s is an r, then r ≠ x becomes r ≠ r in that case, which is necessarily FALSE (ie: a 
contradiction) making the statement self-contradictory.  That self-contradictory statement is 
expressed as

Theorem 1: ∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊥

where ⊥ is the symbol for necessary falsehood.  The left side of the theorem is self-contradictory 
by itself in all cases and in all contexts; there are no exceptions, including when used with the 
diagonal argument.  For example, it is impossible for the same given triangle to be different from 
each member of the set of all   triangles.  Theorem 1 is proven in A.1      _      Proof of Theorem 1      .

Two cases relating to Theorem 1 are of interest.

Theorem 2: (S2 = S1) ⇒ ¬∃r∈S1 (∀x∈S2 (r ≠ x))

Theorem 2 says that, if two sets, S1 and S2, are equal, then it is not   the case that there is a member
of S1 that differs from each member of S2.  This theorem is consistent with Theorem 1.  Theorem 
2 is proven in A.2      _      Proof of Theorem 2      .

Theorem 3: (S2 ⊂ S1) ⇒ ∃r∈S1 (∀x∈S2 (r ≠ x))

Theorem 3 says that, if the set S2 is a proper subset of the set S1, then there is   a member of S1 that 
differs from all members of S2.  Note that the consequent of Theorem 3 is similar to statement (1),
but, in this case, the statement is not self-contradictory.  For example, there is at least one 
rectangle that is different from each member of the set of all squares; the set of all squares being 
a proper subset of the set of all rectangles.  Theorem 3 is proven in A.3      _      Proof of Theorem 3      .

1



The Diagonal Argument 1.2  Equivalent Sets 2

1.2 Equivalent Sets
The cardinality of a set depends on the notion of equivalent sets.  Two sets, A and B, are said to 
be equivalent, denoted by ‹A ∼ B›, if and only if the following statement is TRUE.

∃f (f ∈ {g : g:A → B} ∧ ∀y∈B (∃x∈A (f(x) = y)) ∧ ∀x1, x2∈A ((x1 ≠ x2) → (f(x1) ≠ f(x2)))) (2)

Statement 2 is not as complicated as it appears.  It says that there is a function, f, whose domain is
A and co-domain is B (f:A → B), where each member, y, of B has a pre-image, x, in A (∀y∈B 

(∃x∈A (f(x) = y))), and each member of A maps to a distinct member of B (∀x1, x2∈A ((x1 ≠ x2) 

→ (f(x1) ≠ f(x2)))).  In other words, there is a one-to-one correspondence between the sets A and 

B (A ∼ B).  Now, if there is such a function (ie: if the members of the two sets correspond one-to-
one), then those two sets are said to be equivalent.  It is vitally important to note that, if there is 
such a function f, then the range of f (ran f) is identical to the co-domain of f (cod f).  That is to 
say, ran f = cod f (‹cod f = B› by definition), which is a consequence of statement 2.  By 
contraposition, if for all functions f, ran f ≠ cod f, and because ‹ran f ⊆ cod f› by definition, if 

for all functions f, ran f ⊂ cod f, then A ≁ B.

In summary: if there is at least one function, f:A → B, that is bijective then A ∼ B and ran f = 

cod f = B.  If for all functions, f:A → B, ran f ⊂ cod f, then A ≁ B.

1.3 Cardinal Numbers
In mathematics, it is useful to define the number of elements in a set (the elements of a set are 
always distinct).  To be useful, the definition needs to be represented by mathematical statements.
A cardinal number is the family of sets that are equivalent to a given set  —  each member of 
such a family of sets is associated with the same cardinal number.  Note that a cardinal number is
not the same as a natural number, but there is a correspondence between cardinal numbers and 
natural numbers for finite sets.

The cardinal number for a finite set is identical to the cardinal number for the initial sequence of 
positive natural numbers that are equivalent to that set.  For example, the set A, where A = {10, 3,
30.7, –22}, is equivalent to the initial sequence of positive natural numbers {1, 2, 3, 4} (A ∼ {1, 
2, 3, 4}).  Therefore, the cardinal number of A is the same as the cardinal number of {1, 2, 3, 4} 
(|A| = |{1, 2, 3, 4}|).  Now, the symbol for the cardinal number of an initial sequence of positive 
natural numbers is the same as the symbol for the maximum number in that sequence.  In our 
example, the maximum number in {1, 2, 3, 4} is 4, so the cardinal number of {1, 2, 3, 4} is 4.  
Consequently, the cardinal number of A is also 4 (|A| = 4).

It must be noted that the symbol of a cardinal number, although it looks like the symbol of a 
natural number, is not a natural number  —  it has its own rules which happen to coincide with 
those of natural numbers for finite sets.  It is only for convenience that the symbols are identical. 
Consequently, the cardinal number of a finite set indicates the number of elements in that set.  
Cardinal numbers provide a way to define the number of elements in a set mathematically.

The number of elements in an infinite set is undefined in terms of ordinary numbers.  However, 
cardinal numbers can be used to indicate that an infinite set has a number of elements that is 
greater than any finite number.  The cardinal number for the set of natural numbers is different 
than the cardinal number for every finite set, and is given the symbol ℵ0 (called “aleph-zero”).  
Consequently, any set that is equivalent to the set of natural numbers has the same cardinal 
number ℵ0.  Cardinal numbers for infinite sets are called transfinite cardinal numbers.

Are all infinite sets equivalent to one another?  Georg Cantor [1845–1918], for reasons known 
only to himself, deluded himself into believing that not all infinite sets are equivalent using a 



The Diagonal Argument 1.3  Cardinal Numbers 3

sloppy children’s diagonal argument, and hoodwinked virtually all mathematicians and logicians, 
and others, into worshipping that same belief.  It turns out that it can be rigorously proven (in this
document), using mathematical logic, that all infinite sets are indeed equivalent to one another.

1.4 Critique of the Diagonal Argument
The issue is whether the unit interval is equivalent to the set of natural numbers  —  whether 
ℕ ∼ [0, 1].  The resolution of this issue determines whether there is more than one transfinite 

cardinal number.  If it can be proven that ℕ ≁ [0, 1], then it can easily be deduced that ℕ ≁ ℝ, 

and so |ℕ| ≠ |ℝ|.  It would then follow that there is a second cardinal number ℵ1 (= |ℝ|).  Using a
different theorem, called Cantor’s power set theorem (which is also invalid for the same general 
reason that the diagonal argument is invalid), an infinite sequence of transfinite cardinal 
numbers, ℵ0, ℵ1, ℵ2, ···, would be deduced to exist.  It turns out that the diagonal argument and 
Cantor’s theorem are related such that either both are TRUE or both are FALSE.

Using the definition of equivalent sets (as already shown at statement 2),

A ∼ B  =df

 ∃f (f ∈ {g : g:A → B} ∧ ∀y∈B (∃x∈A (f(x) = y)) ∧ 

 ∀x1, x2∈A ((x1 ≠ x2) → (f(x1) ≠ f(x2)))),  (3)

the equivalence of ℕ and [0, 1] is deduced as follows:

ℕ ∼ [0, 1] ≝
 ∃f (f ∈ {g : g:ℕ → [0, 1]} ∧ ∀x∈[0, 1] (∃n∈ℕ (f(n) = x)) ∧
 ∀n1, n2∈ℕ ((n1 ≠ n2) → (f(n1) ≠ f(n2)))).  (4)

Cantor’s diagonal argument tries to prove that ℕ ≁ [0, 1] by attempting to use the method of 

proof by contradiction.  In this section, ‹ℕ ≁ [0, 1]› will be called the “thesis”, and its negation 

(ℕ ∼ [0, 1]) will be called the “antithesis” in relation to the said proof by contradiction.  So 
statement 4 is the antithesis.  Proof by contradiction considers the antithesis, and if there is a 
contradiction between the antithesis and the ZFC axioms (ZFC axioms of set theory), then those 
axioms logically imply the thesis (ℕ ≁ [0, 1]), but not the antithesis.

The antithesis, given symbolically as it is without specifying the details of ℕ or [0, 1], is not 
contradictory to the ZFC axioms, otherwise statement 4 would be invalid.  Therefore, the details 
of the members of ℕ and [0, 1], along with statement 4, need to be taken into account to proceed 
with the argument.

The antithesis (statement 4) implies that there is at least one function, f, for which the range of f, 
the co-domain of f, and the unit interval are all equal (ran f = cod f = [0, 1]).  See 1.2      _      Equivalent   
Sets  .

The diagonal argument tries to logically “list” the range of f (ran f ) of the antithesis, and, using 
the diagonal method on that list, hopes to conclude, by contradiction, that the range of f is 
different than the co-domain of f (ran f ≠ cod f ) for every f.  This would imply that ℕ ≁ [0, 1].  
See 1.2      _      Equivalent Sets      .

The list (ran f ) is expressed as the set {x1, x2, x3, …} (ran f = {x1, x2, x3, …}), where ∀i∈ℕ (xi = 

f(i)).  Each xi is unique (∀i,j∈ℕ ((i ≠ j) → (xi ≠ xj))) satisfying the ∀n1, n2∈ℕ ((n1 ≠ n2) → 
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(f(n1) ≠ f(n2))) part of statement 4.  Also, the list is equal to the unit interval ({x1, x2, x3, …} = 

[0, 1]), satisfying the ∀x∈[0, 1] (∃n∈ℕ (f(n) = x)) part of statement 4.

Referring to statement 4, the claim in the diagonal method is that there exists a number, r (the so-
called diagonal number), belonging to the co-domain of f (cod f) but is different from each 
member of the range of f (ran f).  In mathematical logic, this is generally expressed as

∃r∈(cod f) (∀x∈(ran f) (r ≠ x)). (5)

However, with the implication of the antithesis, substituting ‹ran f = cod f = {x1, x2, …} = [0, 1]› 
directly into statement 5 results in

∃r∈[0, 1] (∀i∈ℕ ∧ xi∈[0, 1] (r ≠ xi)). (6)

But, STATEMENT 6 IS SELF-CONTRADICTORY as proven by Theorem 1.  So, even before the
details of the diagonal method begin, the very principle upon which that method rests is flawed  
—  the diagonal method is merely a particular case of statement 6.

Note that the use of the set {x1, x2, x3, …} is redundant, but introduced to relate the discussion to 
the way that the diagonal argument is generally presented.  Substituting ‹ran f = cod f = [0, 1]› 
into statement 5 results in ∃r∈[0, 1] (∀x∈[0, 1] (r ≠ x)), which is self-contradictory as before.

The above ought to be enough to convince rational mathematicians to dismiss the diagonal 
argument out of existence.  But for the sake of the die-hard mathematician (who is typically 
convinced more by popularity and emotion than by logic) we will press on.

Some mathematicians may have an issue with substituting ‹ran f = cod f = [0, 1]› into statement 
5.  The antithesis (ℕ ∼ [0, 1]) certainly implies ‹ran f = cod f = [0, 1]›, and r is certainly a 

member of [0, 1] (r ∈ [0, 1]) as defined by the diagonal method.  The “list” in the diagonal 
argument is certainly equal to ran f, because that is the part that varies with different functions f 
of statement 4.

So, we have

(ℕ ∼ [0, 1]) ⇒ (ran f = [0, 1]). (7)

But, the consequent of logical implication 7 is a particular case of the antecedent of Theorem 2, 
therefore,

(ran f = [0, 1]) ⇒ ¬∃r∈[0, 1] (∀x∈(ran f) (r ≠ x)). (8)

Putting logical implications 7 and 8 together, we get

(ℕ ∼ [0, 1]) ⇒ (ran f = [0, 1]) ⇒ ¬∃r∈[0, 1] (∀x∈(ran f) (r ≠ x)). (9)

So, the antithesis implies that there does not   exist a number r (the diagonal number) that is 
different from each member of the list (ran f).  In plain English, this means that no such diagonal 
number can be “constructed”, “defined”, etc.  Therefore, in plain English, the diagonal method 
DOES NOT guarantee that the diagonal number exists.  In fact, the diagonal method DOES 
guarantee that there is NO such diagonal number at all under the condition (ran f = [0, 1]) of the 
antithesis, consequently invalidating the diagonal argument altogether.

But the die-hard mathematician is still not convinced, insisting that

∃r∈[0, 1] (∀x∈(ran f) (r ≠ x)) (10)
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is unconditionally   TRUE (because Cantor said so), thereby indicating a contradiction with the 
consequent of logical implication 9, claiming that the contradiction required by the proof by 
contradiction has been fulfilled.

The VITAL question for the die-hard mathematician is: what justifies the claim that statement 10 
is unconditionally TRUE (ie: that the diagonal method guarantees that the diagonal number r 
exists)?  Statement 10 is certainly not   a tautology  —  Theorem 1 sees to that.  It is not deduced 
from the ZFC axioms since the truth of the statement is conditional upon ‹ran f ⊂ [0, 1]› 
(Theorem 3).  The answer can only be that it is an arbitrarily introduced statement dogmatically 
asserted to be unconditionally TRUE (for example, by the word “construct”).  But, it is forbidden 
to arbitrarily   introduce statements in a logical deduction, otherwise anything can be proven.

However, there is   a condition under which statement 10 is TRUE.  After substituting ‹ran f › for 
S1, and [0, 1] for S2, Theorem 3 implies that

(ran f ⊂ [0, 1]) ⇒ ∃r∈[0, 1] (∀x∈(ran f) (r ≠ x)). (11)

Statement 11 says that, if   ‹ran f› is a proper subset of [0, 1] (= cod f), then, indeed, there is a 
number, r (the diagonal number), that is different from each element of ‹ran f › (the list).  
However, this is a natural consequence of proper subsets, and statement 11 is not relevant to the 
antithesis and the diagonal argument.  The statement certainly does not prove that it is impossible
that ‹ran f = [0, 1]›, which is what is required to be proven to claim that no such function f exists 
satisfying statement 4.

So, in summary to the die-hard mathematician, statement 10 is TRUE only   under the precondition   
that ‹ran f › is a proper subset of [0, 1] (ran f ⊂ [0, 1]), which is an irrelevant condition to the 
argument  —  the statement does not prove   that ‹ran f › must   be a proper subset of [0, 1].  So, the 
diagonal argument tacitly presupposes   (not deduces) logically that the list is a proper subset of 
[0, 1], despite the verbal utterance that the list is (hypothetically) equal to [0, 1].  The mistake 
that the die-hard mathematicians have made is to have assumed that statement 10 is necessarily or
axiomatically TRUE, rather than TRUE only when ‹ran f ⊂ [0, 1]›.

The relation between r, ‹ran f ›, and ‹cod f › can be summarised using Venn diagrams.

ran f  = cod f  = [0, 1] ran f ⊂ [0, 1]

r (the diagonal number) does not exist, 
therefore cannot be used in the diagonal 
argument.

r (the diagonal number) exists only in the
shaded area.  This case is irrelevant to the
diagonal argument.

The antithesis and the proof by contradiction of the diagonal argument logically involve only the 
case on the left, making the argument invalid; the case on the right is irrelevant to the argument.  
But, by dogmatically asserting that statement 10 is TRUE, mathematicians have logically, but 
unknowingly, considered only the case on the right.  However, they ignorantly and naively 
thought that they were considering the case on the left, mistakenly thinking that a contradiction 
arose to reject that case  —  mathematicians have conflated the two cases.  The case on the left 
has not been disproven; it is still possible.
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But the fanatical die-hard “mathematician” will still insist that it is the details   of the actual 
diagonal method that proves it unconditionally TRUE (as though an instance of a theorem can, 
somehow, refute the theorem).  For such die-hards, the actual diagonal method will be analysed in
the next section.

1.4.1 Details for Stubborn Mathematicians
It has already been shown above that the principle of the diagonal argument is flawed.  That 
principle is that it is possible for there to be an entity belonging to a set of all   such entities but 
different from each member of that set.  In the case of the diagonal argument, that translates to: it 
is possible for there to be a number, r, in the unit interval ([0, 1]) belonging to a list (the range of 
a function f ) of all   such numbers but different from each member of that list.  Keep in mind that 
the diagonal argument assumes, hypothetically, that the range of f is identical to the unit interval.

We now consider the details of the diagonal method in terms of mathematical logic.  The diagonal
number r can be represented by a sequence of digits as

r = <a0, a1, a2, …>, (12)

and the function f which maps the natural numbers to the unit interval, not necessarily as a 
one-to-one correspondence, can be defined by digit sequences as

∀i∈ℕ ( f(i) = xi = <bi0, bi1, bi2, …>), (13)

where ∀i, j∈ℕ (ai, bi,j ∈ {0, …, 9}).  The sequences represent the decimal digits of numbers in 
the unit interval.  We also have the following equations based on statements 12 and 13 above,

L = ran f = {f(0), f(1), …} = {x0, x1, …} = {<b00, b01, …>, <b10, b11, …>, …}. (14)

L represents the “list” that is typically mentioned in the traditional diagonal argument.

We also have the following Lemma deduced from the equations 12 and 14.

Lemma L1: ∀i∈ℕ ∧ ai∈r ∧ bi,i∈xi (ai ≠ bi,i) ⇒ ∀i∈ℕ ∧ xi∈L (r ≠ xi).

We now prove that the diagonal method is FALSE if the antithesis is assumed  .  First, we have that

∃r∈[0, 1] (∀i∈ℕ ∧ ai∈r ∧ bi,i∈xi (ai ≠ bi,i)) ⇒  [DIAGONAL METHOD]

   ∃r∈[0, 1] (∀i∈ℕ ∧ xi∈L (r ≠ xi)).  [by Lemma L1] (15)

But (if the antithesis is now assumed, ie, ‹L = [0, 1]›),

(L = [0, 1]) ⇒ ¬∃r∈[0, 1] (∀i∈ℕ ∧ xi∈L (r ≠ xi)).  [by Theorem 2] (16)

The contrapositive of logical implication 15 is

¬∃r∈[0, 1] (∀i∈ℕ ∧ xi ∈ L (r ≠ xi)) ⇒ ¬∃r∈[0, 1] (∀i∈ℕ ∧ ai∈r ∧ bi,i∈xi (ai ≠ bi,i)).  (17)

Therefore, combining logical implications 16 and 17, we get

(L = [0, 1]) ⇒ ¬∃r∈[0, 1] (∀i∈ℕ ∧ ai∈r ∧ bi,i∈xi (ai ≠ bi,i))

and the diagonal method is FALSE if the antithesis is assumed.  Note carefully that an external 
general theorem (Theorem 2) was used in the proof above to prove that the diagonal method is 
FALSE.  Therefore, it is logically invalid to claim that the diagonal method guarantees   that r is 
different from each number in the list L, because r does not exist.  All that the diagonal method 
guarantees is that it is FALSE if the antithesis (L = [0, 1]) is assumed.
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But mathematical logic is beyond the comprehension of the die-hard mathematician, so the actual 
presentation of Cantor’s diagonal method will be analysed to reveal its flaw.

The following is a demonstration of exactly where the contradiction in the diagonal method 
arises.  The contradiction occurs entirely within the method itself, not as a contradiction with the 
ZFC axioms.

Below is an illustrative example of the ‘list’ so popular with that children’s diagonal argument.

x0 = 0.3.......

x1 = 0..7......

x2 = 0...5.....

          ⋮     ⋱

xn = 0.486..?...  (the diagonal number, r)

          ⋮           ⋱

First of all, in the traditional presentation of the diagonal argument, the variable r, representing 
the diagonal number, is presented outside the list.  To be consistent with the antithesis, the 
variable r MUST be presented IN the actual list (as shown in the example above at xn), not 
somewhere outside the list.  Having the variable not   in the actual list implies a different list   than 
the one assumed by the antithesis.  In other words, using a separate   variable for the diagonal 
number implies that the number may be equal to some number in the list, or that it may be 
different from all the numbers in the list.  However, by the antithesis, the number is in the unit 
interval (which is equal to the list), so the diagonal number r should not   be presented as a 
separate variable but presented as one of the numbers in   the list (ie: xn).  Conversely, if the 
diagonal number r is different from all   of the numbers in the list, then the list is not the antithesis 
list, but a proper subset of the antithesis list, even before the diagonal method begins.  Therefore, 
in that case, the diagonal method itself is redundant because it is already presupposed that there is
a number, r, not in a proper subset of the antithesis list, and so no contradiction occurs.

Let us proceed.  Take r (= xn) to be in   the list since the list contains all   the real numbers 
(including the diagonal number) in the interval [0, 1] as per the antithesis.  The diagonal number 
is defined by having its kth digit one greater than the kth digit of xk, except when the kth digit is 9.  
In that case, the kth digit of xk, will be 0.  With the example list above, the 4 is one greater than 
the 3; the 8 is one great than the 7; the 6 is one greater than the 5; and so on. What digit should 
replace the question mark (?)?  By the very definition of the diagonal method itself, that digit 
would have to be one greater than itself, which is logically impossible.

The diagonal method is attempting to use the diagonal number itself as part of its own definition 
in a self-contradictory way; therefore the diagonal method is self-contradictory.  No such entity 
defined in the said manner can exist.  If someone wants to claim that the said contradiction 
implies that the diagonal number r does exist but cannot   be in the list, then they must accept the 
logical presupposition in the diagonal method that “the list” is a proper subset ([0, 1]\{r}) of the 
antithesis list, and not the list that is actually assumed by the antithesis ([0, 1])  —  the antithesis 
list is still possible (with dire consequences for the diagonal argument).

What mathematicians seemed to have done is that they initially assumed that r may or may not be
in the list (via the antithesis), and then imagined, by naively conflating both cases together, that 
they had deduced, by the diagonal method, that the diagonal number could not possibly be in the 
list.  Here, they failed to separate the two cases of the number r being in the list and not in the list
—  the first case is self-contradictory; the second case tacitly presupposes that the presented list 
is a proper subset of the antithesis list even before the introduction of the diagonal method.  
Presenting a proper subset of the antithesis list is irrelevant to the diagonal argument; the 
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existence of a proper subset of the antithesis list does not logically invalidate the existence of the 
antithesis list itself.  In both cases, the diagonal argument fails.

Some mathematicians may want to claim that the antithesis is actually that the function f is a 
bijection (a one-to-one and onto   function).  They then show that the diagonal method is TRUE 
only for a proper subset of the antithesis function’s co-domain, therefore the antithesis function 
cannot be a bijection, claiming that the bijectivity of the antithesis is what has been contradicted.  
Here, they make the following mistake.  By claiming that the diagonal method implies a proper 
subset of the antithesis function’s co-domain, they have also tacitly presupposed a different 
function, h (a one-to-one and into   function), rather than the function f of the antithesis.  So, no 
contradiction has been obtained with the original antithesis function f.  In other words, the 
diagonal method can only be TRUE with a different   function, h, rather than with f (the diagonal 
method is impossible with f).  So all they prove is that the diagonal method, if TRUE, entails that 
there exists a function, h, that is one-to-one and into  .  They completely fail to prove that there 
cannot   exist a function f (one-to-one and onto  ).  Here, they conflate the functions h and f.  The 
existence of the function h does not logically invalidate the existence of the function f.  This is 
the sort of confusion that happens when amateurs use pictorial children’s methods with subjective
terms as proofs in place of proper logical proofs with proper logical terms.

1.5 Critique of Cantor’s Power Set Theorem
Cantor’s power set theorem (usually just called “Cantor’s Theorem”) claims that the cardinality 
of any set is strictly less than the cardinality of its power set (∀A (|A| < |℘(A)|)).  For finite sets, 
this is certainly TRUE, but will not be proven in this document.  The issue arises with infinite sets;
does the strict inequality hold for them?  If A ∼ ℘(A) is proven for infinite sets, then the 

cardinality of an infinite set is equal to the cardinality of its power set (|A| = |℘(A)|), and for all 

sets, we would have ∀A (|A| ≤ |℘(A)|).

The argument used in Cantor’s power set theorem will be called the “power set argument” in this 
document.  Just as the diagonal argument is invalid, so too the power set argument is invalid for 
the same general reason.

The aim of this section is to show that the argument that claims the non-equivalence of an infinite
set, A, and its power set, ℘(A), is invalid.  The equivalence of A and ℘(A) is defined as follows:

A ∼ ℘(A) ≝
 ∃f (f ∈ {g : g:A → ℘(A)} ∧ ∀P∈℘(A) (∃x∈A (f(x) = P)) ∧
 ∀x1, x2∈A ((x1 ≠ x2) → (f(x1) ≠ f(x2)))).  (18)

The power set argument tries to prove that A ≁ ℘(A) by attempting to use the method of proof by 

contradiction.  In this section, A ≁ ℘(A) will be called the “thesis”, and its negation (A ∼ ℘(A)) 
will be called the “antithesis” in relation to the said proof by contradiction.  Proof by 
contradiction considers the antithesis, and if there is a contradiction between the antithesis and 
the ZFC axioms (ZFC axioms of set theory), then those axioms logically imply the thesis ( A ≁ 

℘(A)), but not the antithesis.

The antithesis (statement 18) implies that there is at least one function, f, for which the range of f,
the co-domain of f, and the power set of A are all equal (ran f = cod f = ℘(A)).  See
1.2      _      Equivalent Sets      .

Referring to statement 18, the claim in the power set argument is that, for every f, there exists a 
set, S, belonging to the co-domain of f (cod f) but is different from each member of the range of f 
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(ran f).  This means that the range of f is different than the co-domain of f (ran f ≠ cod f ) for 

every f, implying that A ≁ ℘(A), and, with a bit more logic, that ∀A (|A| < |℘(A)|).

Just as for the diagonal method, the problem is that the power set argument attempts to achieve 
the logically impossible in a devious way.

The claim effectively states that the following statement is TRUE.

∃S∈(cod f) (∀P∈(ran f) (S ≠ P)). (19)

However, with the implication of the antithesis, substituting ‹ran f = cod f = ℘(A)› directly into 
statement 19 results in

∃S∈℘(A) (∀P∈℘(A) (S ≠ P)). (20)

This means that there is a set, S, that is a subset of the set A, that is different from each subset in 
the range of f which contains all the subsets of A.

But, STATEMENT 20 IS SELF-CONTRADICTORY as proven by Theorem 1.  So, even before 
the details of the power set argument begin, the very principle upon which that argument rests is 
flawed  —  the power set argument is merely a particular case of statement 20.

From the antithesis, we have

(A ∼ ℘(A)) ⇒ (ran f = ℘(A)). (21)

But, the consequent of logical implication 21 is a particular case of the antecedent of Theorem 2, 
therefore,

(ran f = ℘(A)) ⇒ ¬∃S∈℘(A) (∀P∈(ran f) (S ≠ P)). (22)

Putting logical implications 21 and 22 together, we get

(A ∼ ℘(A)) ⇒ (ran f = ℘(A)) ⇒ ¬∃S∈℘(A) (∀P∈(ran f) (S ≠ P)). (23)

So, the antithesis implies that there does not   exist a subset S of A that is different from each 
member of the range of f (ran f).  In plain English, this means that no such subset can be 
“constructed”, “defined”, etc.  Therefore, in plain English, the power set argument DOES NOT 
guarantee that the subset S exists.  In fact, the power set argument DOES guarantee that there is 
NO such subset at all under the condition (ran f = ℘(A)) of the antithesis, consequently 
invalidating the power set argument altogether.  (The reader may notice some déjà vu happening 
here with the diagonal argument.)

But the die-hard mathematician is still not convinced, insisting that

∃S∈℘(A) (∀P∈(ran f) (S ≠ P)) (24)

is unconditionally   TRUE (because Cantor said so), thereby indicating a contradiction with the 
consequent of logical implication 23, claiming that the contradiction required by the proof by 
contradiction has been fulfilled.

The VITAL question for the die-hard mathematician is: what justifies the claim that statement 24 
is unconditionally TRUE?  Statement 24 is certainly not   a tautology  —  Theorem 1 sees to that.  It
is not deduced from the ZFC axioms since the truth of the statement is conditional upon ‹ran f ⊂ 

℘(A)› (Theorem 3).  The answer can only be that it is an arbitrarily introduced statement 
dogmatically asserted to be unconditionally TRUE.  But, it is forbidden to arbitrarily   introduce 
statements in a logical deduction, otherwise anything can be proven.  (More déjà vu.)
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However, there is   a condition under which statement 24 is TRUE.  After substituting ‹ran f › for 
S1, and ℘(A) for S2, Theorem 3 implies that

(ran f ⊂ ℘(A)) ⇒ ∃S∈℘(A) (∀P∈(ran f) (S ≠ P)). (25)

Statement 25 says that, if   ‹ran f › is a proper subset of ℘(A) (= cod f), then, indeed, there is a 
subset, S, that is different from each element of ‹ran f ›.  However, this is a natural consequence 
of proper subsets, and statement 25 is not relevant to the antithesis and the power set argument.  
The statement certainly does not prove that it is impossible   that ‹ran f = ℘(A)›, which is what is 
required to be proven to claim that no such function f exists satisfying statement 18.

So, in summary to the die-hard mathematician, statement 24 is TRUE only   under the precondition   
that ‹ran f › is a proper subset of ℘(A) (ran f ⊂ ℘(A)), which is an irrelevant condition to the 

argument  —  the statement does not prove   that ‹ran f › must   be a proper subset of ℘(A).  So, the 
power set argument tacitly presupposes   (not deduces) logically that the range of f is a proper 
subset of ℘(A), despite the verbal utterance that the range of f is (hypothetically) equal to ℘(A).  
The mistake that the die-hard mathematicians have made is to have assumed that statement 24 is 
necessarily or axiomatically TRUE, rather than TRUE only when ‹ran f ⊂ ℘(A)›.

1.5.1 Details for Stubborn Mathematicians
What is this subset, S, magically created by mathematicians, that feigns the conclusion that the 
power set of an infinite set has greater cardinality than the set?

The magical set, S, is defined this way.

S = {x ∈ A : x ∉ f(x)} (26)

This set is arrogantly ASSUMED to exist unconditionally by mathematicians.  Merely defining a 
set does not automatically guarantee that it exists (mathematically) because a definition can be 
self-contradictory or conditional.  The correct way to define the set in mathematical logic is

∃S (∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) (27)

Statement 27 must be proven   to be TRUE, not just assumed to be so.  The statement involves the 
function f, and is therefore conditional (because the existence of f is conditional).  If the statement
is conditional, then it could   be FALSE.  And, if it could be FALSE, then it is not derived from the 
ZFC axioms unconditionally.

Now, the power set argument does deduce a contradiction from statement 27 with the antithesis.  
But that contradiction is the result of the definition of S, together with the antithesis, being self-
contradictory, rather than from a conjunction of a deduction from the statement (and the 
antithesis) with another statement derived from the ZFC axioms independently of the antithesis.  
In other words, the contradiction required   by the proof by contradiction is a contradiction 
between (1) the antithesis and (2) the ZFC axioms entirely independent of the antithesis.  Neither 
of those two lines of logic are permitted to result in a contradiction themselves  —  the required 
contradiction needs to be from the conjunction of the conclusions of those two lines.  There is no 
such contradiction between those two lines of logic in the power set argument.  The power set 
argument has only one line of logic that depends on the antithesis, and the resulting contradiction 
makes that line itself self-contradictory.

The following shows that statement 27 leads to a contradiction using proper mathematical logic.  
Firstly, we will assume that S is not the null set (S ≠ ∅) to avoid complications.  It is unlikely 
that mathematicians intended that the set be null, so the non-null set assumption is a fair one.  In 
any case, it does not alter the outcome.
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∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ⇒  [from definition of S (statement 27)]

∀x (x ∈ S → x ∈ A) ⇔  [deduction]

S ⊆ A ⇔  [by definition of subset]

S ∈ ℘(A)  [by definition of power set] □

∀P∈℘(A) (∃x∈A (f(x) = P)) ⇔  [by definition of the ‘onto’ part of f ]

∀P∈{S} (∃x0∈A (f(x0) = P)) ∧ ∀P∈℘(A)\S (∃x∈A (f(x) = P)) ⇒  [separation of S from ℘(A)]

∀P∈{S} (∃x0∈A (f(x0) = P)) ⇔  [deduction]

∃x0∈A (f(x0) = S) ⇔  [simplification (P = S)]

∃x0 (x0 ∈ A ∧ (f(x0) = S)) ⇒  [equivalence to the previous statement]

x0 ∈ A  [interpretation then deduction]

f(x0) = S  [interpretation then deduction] □

∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ⇔  [from definition of S (statement 27)]

∀x∈{x : x = x0} (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ∧
     ∀x∈{x : x ≠ x0} (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ⇒  [separation of x0 from x] 

∀x∈{x : x = x0} (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ⇔  [deduction]

x0 ∈ S ↔ x0 ∈ A ∧ x0 ∉ f(x0) ⇔  [simplification (x = x0)]

x0 ∈ S ↔ x0 ∈ A ∧ x0 ∉ S ⇔  [substitution from f(x0) = S of a previous step]

x0 ∉ S ∧ x0 ∉ A ⇒  [simplification of bi-conditional (↔)]

x0 ∉ A. [deduction]

x0 ∉ A ∧ x0 ∈ A ⇔ ⊥  [x0 ∈ A from a previous step] ∎

Therefore: ∃S(∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x))) ⇒ ∃S(⊥) ⇒ ⊥.  [from the deduction above]

Therefore: ∃S(∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x))) ⇔ ⊥.  [statement 27 is self-contradictory]

Notice that the argument presented above, showing that S is self-contradictory, is the same as the 
traditional power set argument, but is a direct   proof.  If the traditional power set argument is 
considered valid by mathematicians, then so too the (almost) identical argument above ought to 
be considered valid.  The difference is that, in the traditional power set argument, S is arbitrarily   
assumed to exist unconditionally   without proof (of which there is none)  —  it is that assumption 
that makes the traditional power set argument invalid.

So, the contradiction resulting from the power set argument is a consequence of the definition of 
S being self-contradictory, not a consequence of ‹A ∼ ℘(A)› being contradictory with the ZFC 
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axioms.  A way to avoid the contradiction is to define S as ‹S = {x ∈ A : x ∉ f(x)\S}›, rather than 
as the deliberately contrived self-contradictory set S used in the power set argument.  Defining S 
in the said manner allows ‹x0 ∈ A› without contradiction (allowing f to be ‘onto’), but is useless 
to the power set argument.

It is important to note that the self-contradiction of statement 27 arises only in conjunction with 
the implied ‘onto’ function f of the antithesis; no contradiction results for functions, f, that are 
‘into’ (ie: where ran f ⊂ ℘(A)).  However, the antithesis together with the proof by contradiction 
of the traditional power set argument logically considers only ‘onto’ functions, making that 
argument invalid (as shown above); ‘into’ functions are irrelevant to the argument.  But, by 
dogmatically asserting that statement 27 is unconditionally TRUE, mathematicians have logically, 
but unknowingly, considered only ‘into’ functions.  However, they ignorantly and naively thought
that they were considering ‘onto’ functions, mistakenly thinking that a contradiction arose to 
reject that case  —  the case where the function f is ‘onto’ has not been disproven; it is still 
possible.  Mathematicians have conflated the two cases.

In summary, if the antithesis is TRUE then statement 27 (and 26) is self-contradictory (as proven 
above), and the power set argument is invalid.  But mathematicians have dogmatically   asserted 
that the statement is unconditionally TRUE (without justification), and falsely claimed that the 
resulting contradiction proves that the antithesis is FALSE (ie: that it is impossible that there exists
an ‘onto’ function f).  Statement 27 cannot be derived from the ZFC axioms because its truth is 
conditional on the antithesis  —  the ZFC axioms are not conditional.  So, under the hypothetical 
assumption that A ∼ ℘(A), the traditional power set argument fails.

But the die-hard mathematician is so stubborn (and hard to teach) that further convincing is 
required.  From statement 27 we have

∃S (∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)) ⇒ ∃S∈℘(A) (∀P∈(ran f) (S ≠ P)). (28)

The consequent of logical implication 28 states that the set S is a subset of A, and that it is 
different than any of the subsets of A that are in the range of f.  Note that no assumption that 
‹ran f = ℘(A)› has been made in statement 28.  (Note that cod f = ℘(A) by definition.)  We now 
assume the antithesis to obtain

(ran f = ℘(A)) ⇒ ¬∃S∈℘(A) (∀P∈(ran f) (S ≠ P)).  [by Theorem 2] (29)

The contrapositive of logical implication 28 is

¬∃S∈℘(A) (∀P∈(ran f) (S ≠ P)) ⇒ ¬∃S (∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x)). (30)

Therefore, combining logical implications 29 and 30, we get

(ran f = ℘(A)) ⇒ ¬∃S (∀x (x ∈ S ↔ x ∈ A ∧ x ∉ f(x))

and the existence of the magical set, S, assumed in the traditional power set argument to 
unconditionally   exist, is FALSE if the antithesis is assumed (ran f = ℘(A)).  Note carefully that an 
external general theorem (Theorem 2) was used in the proof above to prove that the existence of  S 
is FALSE.  Therefore, it is logically invalid to claim in the power set argument that the set S exists.
No fancy words like “construct the subset S” or “consider the subset S” or “define the subset S” is
going to make a non-existent set existent (mathematically speaking) unless the set in question is 
magical and some sort of mathematical wizard brings it into existence (maybe the Wizard of Oz 
can do it; or maybe Cantor was actually the Wizard of Oz pretending to be a mathematician!).
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2
Proof that the Reals are Denumerable

2.1 Preliminaries
It is not possible to determining whether two infinite sets are not equivalent if the elements of the 
two sets are regarded as unrelated indivisible units.  In principle, it appears that some intrinsic 
relation between the elements of the two sets needs to be known to determine that they are not 
equivalent.  The default situation is that two infinite sets are equivalent (there is no reason to 
consider otherwise).  However, if it is proposed that any two particular infinite sets are not 
equivalent, as is assumed with the natural numbers and the real numbers, then that proposal may 
be contested by considering the intrinsic nature of the elements of the two sets.

Mathematicians currently (in 2025) assume that the rational numbers are not equivalent to the 
irrational numbers.  However, by examining the intrinsic nature of both sets of numbers, it can be
rigorously proven that the two sets are indeed equivalent.  The rational numbers and the irrational
numbers can both be defined within a single system called Dedekind cuts.  It turns out that the 
definition of Dedekind cuts guarantees   that the cardinality of the irrational numbers is identical to
the cardinality of the rational numbers.  Consequently, the real numbers are not   denumerable, 
contrary to current mathematical “wisdom”.

The definition of a Dedekind cut for an irrational number   is an ordered pair (L, R) of subsets of 
the rational numbers, ℚ, into two non-null sets, L and R, satisfying the following conditions:

1. L ∪ R = ℚ  (L and R together contain all the rational numbers)

2. L ∩ R = ∅  (L and R are disjoint; they have no common elements)

3. ∀a∈L (∀b∈R (a < b))  (every element of L is less than all the elements of R)

4. ∀x∈L (∃y∈L (x < y))  (L contains no greatest element)

5. ∀x∈R (∃y∈R (y < x))  (R contains no smallest element) 

If condition 5 is omitted, then the remaining four conditions define a real number.  Dedekind 
cuts, (L, R), representing only irrational numbers will be considered in this document .  The 
elements of partition L are all on the left of the cut, and the elements of partition R are all on the 
right of the cut on the number line of rational numbers.

In the diagram below, the rational numbers are represented by the area between the two horizontal
lines.  The rational numbers increase to the right.

              Dedekind cut
(represents an irrational number)

The vertical bar represents a Dedekind cut  —  an irrational number.  The L and R represent sets 
as defined in the definition of a Dedekind cut above.  All the Dedekind cuts represent all the 
irrational numbers and vice versa.  The two sets contain only rational numbers.

13

L R
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Side Note: The reader should be made aware at this point that doomsday is fast approaching for 
transfinite cardinal numbers  —  repent now, for that time is nigh.

An important property of Dedekind cuts is that between any two irrational numbers, c1 and c2, 
there is a rational number.

Theorem 10: There exists a rational number between any two distinct Dedekind cuts (irrational 
numbers).

Proof:

Let c1 = (L1, R1) and c2 = (L2, R2).  Assume that c1 < c2.

We seek to prove that the set of rational numbers between c1 and c2 is not the null set, therefore it 
contains at least one rational number.  In other words, we seek to prove R1 ∩ L2 ≠ ∅.

c1 < c2  ≝ L1 ⊂ L2.  [by definition from the theory of Dedekind cuts]

L1 ⊂ L2 ⇒ (L ̅1 ∩ L2 ≠ ∅).  [from set theory]

L ̅1 ∩ L2 = R1 ∩ L2.  [since L1 and R1 are complementary from the definition of a Dedekind cut]

R1 ∩ L2 ≠ ∅.  [substitution]

∃x (x ∈ (R1 ∩ L2)).  [obviousness] ∎

Another important property of Dedekind cuts is that between any two rational numbers, r1 and r2, 
there is an irrational number (a Dedekind cut).

Theorem 11: There exists an irrational number (Dedekind cut) between any two distinct rational 
numbers.

Proof:

Assume that r1 < r2.  L is the set of rational numbers to the left of the Dedekind cut (the vertical 
line), and R is the set to the right.

(r2 – r1)/√2 + r1 is an irrational number because √2 is irrational and r1 and r2 are rational.  Note 
that in place of the √2, any irrational number greater than 1 can be used.

Define the sets L and R: L = {x : x < (r2 – r1)/√2 + r1} and R = {x : x > (r2 – r1)/√2 + r1}.

The Dedekind cut is the irrational number (r2 – r1)/√2 + r1 between r1 and r2. ∎

Verification:

(r1 < (r2 – r1)/√2 + r1) ⇔ (0 < (r2 – r1)/√2) ⇔ (0 < (r2 – r1) ⇔ r1 < r2) □
(r2 > (r2 – r1)/√2) + r1 ⇔ ((r2 – r1) > (r2 – r1)/√2) ⇔ (1 > 1/√2) ⇔ (√2 > 1) □

The two theorems above prove that the rational and irrational numbers are interleaved, making it 
impossible that the two sets of numbers have different cardinalities.

R1  L2

c1 c2

L1 R2

L R• r1 • r2
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2.2 The Irrationals Precede the Rationals
This section proves that the irrational numbers precede the rational numbers.  This means that all   
of the irrational numbers can correspond one-to-one to a subset of the rational numbers.  The set 
of rational numbers is denoted by ℚ, and the set of irrational numbers is denoted by ℚ̅.

For any given irrational number, c, there is at least one rational number, r, greater than c and less 
than all   other irrational numbers, k, greater than c.  c can be associated uniquely with that rational
number r.  This is written mathematically as

∀c∈ℚ̅ (∃r∈ℚ (∀k∈ℚ̅ (c < k → c < r < k))). (50)

Statement 50 implies ℚ̅ ≾ ℚ, therefore |ℚ̅| ≤ |ℚ|, because each c can be associated with one (or 
more) r uniquely among similar associations of all other irrational numbers k.

This is illustrated in the following diagram for each c.  The area between the two horizontal lines 
represents the rational number line increasing to the right.  The vertical lines represent Dedekind 
cuts between rational numbers.  The dot represents the rational number(s) to the left of the cuts k.

All   the cuts, k, to the right of the reference cut, c, have the one (or more) same rational number, r,
to their left.  This means that the reference cut c can be associated with a unique rational number 
(r) on its right, among all similar associations of all the cuts (irrational numbers) in the rational 
number line.  This situation applies to each c in the number line.  Therefore, each   c in the number
line can be associated with its own rational number, unique among the rational numbers 
associated with other cuts.

Justification of statement 50:

Let c ∈ ℚ̅.  The statement ∀d∈ℚ̅ (∃r∈ℚ (c < d → c < r < d)) says that, if c < d, then between c 
and d, there is an r (for each d).  This is proven by Theorem 10.

But, the same rational number r is also less than all irrational numbers, k, greater than or equal to 
the irrational number d (see diagram).  In other words, if r is less than d, it is also less than all k’s
greater than or equal to d.  The said statement is modified, as follows, to express this new fact.

∀d∈ℚ̅ (∃r∈ℚ (∀k∈ℚ̅ (c < d ≤ k → c < r < d ≤ k))).

We are not interested in d, so we equate d with k and remove ∀d∈ℚ.  Therefore,

∃r∈ℚ (∀k∈ℚ̅ ((d = k) ∧ (c < d ≤ k → c < r < d ≤ k))) ⇒

∃r∈ℚ (∀k∈ℚ̅ (c < k ≤ k → c < r < k ≤ k)) ⇒  [substitute k for d]

∃r∈ℚ (∀k∈ℚ̅ (c < k → c < r < k)).  [simplify]

The above applies to all c ∈ ℚ̅.  Therefore,

∀c∈ℚ̅ (∃r∈ℚ (∀k∈ℚ̅ (c < k → c < r < k))). ∎

Statement 50 is justified, and each c can be associated with a unique r to its right.

• r

c k k k k k (d  k)
(d)

···



Proof that the Reals are Denumerable 2.2  The Irrationals Precede the Rationals 16

Can two or more cuts (irrational numbers), c1 and c2, be associated with the same rational number 
r?  Consider that c1 < c2, and c2 < r.  Assume that r is associated with c2.

Now, r cannot be associated with c1 because it is to the right of c2; the rational number associated 
with c1 must be to the left of all   cuts to its right, and r is not to the left of c2.  In other words, for 
r to be associated with c1 it must be between c1 and c2 (c1 < r < c2).

Now assume that r is associated with c1.

We see that r cannot be associated with c2 because the rational number associated with c2 must be
to the right of c2.

Therefore, each cut (irrational number) corresponds to a unique rational number among the 
rational numbers associated with all other cuts (irrational numbers).  A cut can possibly be 
associated with more than one rational number, but no other cut can be associated with those 
rational numbers.  So, we have that each irrational number can correspond one-to-one with (at 
least) one rational number.  Therefore, the irrational numbers precede the rational numbers.  In 
other words, ℚ̅ ≾ ℚ, as promised.

2.3 The Rationals Precede the Irrationals
This section proves that the rational numbers precede the irrational numbers.  This means that all   
of the rational numbers can correspond one-to-one to a subset of the irrational numbers.  The set 
of rational numbers is denoted by ℚ, and the set of irrational numbers is denoted by ℚ̅.

For any given rational number, q, there is at least one irrational number, c, greater than q and less
than all   other rational numbers, r, greater than q.  q can be associated uniquely with that irrational
number c.  This is written mathematically as

∀q∈ℚ (∃c∈ℚ̅ (∀r∈ℚ (q < r → q < c < r))) (51)

Statement 51 implies ℚ ≾ ℚ̅, therefore, |ℚ| ≤ |ℚ̅|, because each r can be associated with one (or 
more) c uniquely among similar associations of all other rational numbers r.

This is illustrated in the following diagram for each q.  The area between the two horizontal lines 
represents rational numbers increasing to the right.  The dots represent rational numbers.  The 
vertical line represents the Dedekind cut(s) to the left of the rational numbers r.

All   the rational numbers, r, to the right of the reference rational number, q, have one (or more) 
same cut (irrational number), c, to their left.  This means that the reference rational number q can 
be associated with a unique cut (c) on its right, among similar associations of all the rational 

• r

c1 c2

• r

c1 c2

q r r r r r (d  r)
(d)

···• • • • •c
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numbers in the rational number line.  This situation applies to each q in the number line.  
Therefore, each   q in the number line can be associated with its own cut (irrational number), 
unique among the cuts associated with other rational numbers.

Justification of statement 51:

Let q ∈ ℚ.  The statement ∀d∈ℚ (∃c∈ℚ̅ (q < d → q < c < d)) says that, if q < d, then between 
q and d, there is a c (for each d).  This is proven by Theorem 11.

But, the same irrational number c is also less than all rational numbers, r, greater than or equal to 
the rational number d (see diagram).  In other words, if c is less than d, it is also less than all r’s 
greater than or equal to d.  The said statement is modified, as follows, to express this new fact.

∀d∈ℚ (∃c∈ℚ̅  (∀r∈ℚ (q < d ≤ r → q < c < d ≤ r))).

We are not interested in d, so we equate d with r and remove ∀d∈ℚ.  Therefore,

∃c∈ℚ̅  (∀r∈ℚ ((d = r) ∧ (q < d ≤ r → q < c < d ≤ r))) ⇒

∃c∈ℚ̅  (∀r∈ℚ (q < r ≤ r → q < c < r ≤ r)) ⇒  [substitute r for d]

∃c∈ℚ̅  (∀r∈ℚ (q < r → q < c < r)).  [simplify]

The above applies to all q ∈ ℚ.  Therefore,

∀q∈ℚ (∃c∈ℚ̅  (∀r∈ℚ (q < r → q < c < r))). ∎

Statement 51 is justified, and each q can be associated with a unique c on its right.

Can two or more rational numbers, r1 and r2, be associated with the same irrational number c?  
Consider that r1 < r2, and r2 < c.  Assume that c is associated with r2.

Now, c cannot be associated with r1 because it is to the right of r2; the irrational number 
associated with r1 must be to the left of all   rational numbers to its right, and c is not to the left of 
r2.  In other words, for c to be associated with r1 it must be between r1 and r2 (r1 < c < r2).

Now assume that c is associated with r1.

We see that c cannot be associated with r2 because the irrational number associated with r2 must 
be to the right of r2.

Therefore, each rational number corresponds to a unique irrational number (cut) among the 
irrational numbers associated with all other rational numbers.  A rational number can possibly be 
associated with more than one irrational number, but no other rational number can be associated 
with those irrational numbers.  So, we have that each rational number can correspond one-to-one 
with (at least) one irrational number.  Therefore, the rational numbers precede the irrational 
numbers.  In other words, ℚ ≾ ℚ̅, as promised.

• • c

r1 r2

• •c

r1 r2
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2.4 Other Arguments
There are other intuitive arguments to show that the cardinalities of the rational numbers and 
irrational numbers are the same.  These are not rigorous arguments, but nonetheless point in the 
direction that makes the justification of transfinite cardinal numbers beyond ℵ0 doubtful.

Note that the preceding sections will later lead to the absolute certainty that the existence of 
transfinite cardinal numbers beyond ℵ0 is factitious.

2.4.1 Cardinalities of Rational and Irrational Numbers
This argument uses the definition of an irrational Dedekind cut (see 2.1      _      Preliminaries      ).

That the cardinality of the set of irrational Dedekind cuts (irrational numbers) cannot exceed the 
cardinality of the set of rational numbers is proven as follows.

Each irrational Dedekind cut is associated with a unique set to its left (“L-set”).  For any given 
L- set (SL), consider all the L-sets to its left (S1, S2, S3, …) on the rational number line.  The given 
L-set minus all the L-sets to its left (SL\(S1 ∪ S2 ∪ S3 ∪ …)) cannot be the null set (by definition 

of a Dedekind cut).  That set difference (SD) contains some rational numbers (SD ≠ ∅).

Now consider each possible L-set (SL) on the rational number line.  Each SL corresponds to an 
irrational number and is also associated with a unique SD because all the SD’s are disjoint (because
of the definition of set difference).  Therefore, the sets of L-sets, irrational numbers, and SD’s are 
equivalent.

Define a choice set (SC) containing a single arbitrary member from each SD (allowable by the 
Axiom of Choice).  The cardinality of SC cannot be greater than the cardinality of the rational 
numbers, because that choice set contains only rational numbers.  But, the set of irrational 
numbers is equivalent to the set of irrational Dedekind cuts, which is equivalent to the set of all 
the SD’s, which is equivalent to the set SC, which cannot be greater than the cardinality of the set 
of rational numbers, which is ℵ0.  Therefore, the cardinality of the set of irrational numbers 

cannot be greater than ℵ0  —  simples.  In other words, the definition of irrational Dedekind cuts 
guarantees that the cardinality of the cuts (irrational numbers) cannot be greater than the 
cardinality of the rational numbers.  That is to say, |ℚ̅| ≤ |ℚ|.

However, mathematicians claim that, at least, |ℚ| ≤ |ℚ̅|.  So, in conclusion,

(|ℚ̅| ≤ |ℚ|) ∧ (|ℚ| ≤ |ℚ̅|) ⇒ (|ℚ| = |ℚ̅|).

2.4.2 Maximum Partition Size of the Set of Rational Numbers
The maximum cardinality of all possible partitions of a finite set cannot exceed the cardinality of
the set.  Each member of a partition is called a ‘block’.  We can therefore say that the maximum 
number of blocks in a finite set cannot exceed the cardinality of the set.  For example, the 
maximum number of blocks in {5, 6, 7} cannot exceed 3; those blocks are {5}, {6}, and {7}; it is 
not possible to have a greater number of blocks.  Likewise, for infinite sets, the maximum number
of blocks cannot exceed the cardinality of the set because the maximum number of blocks are the 
singletons of the set elements.

The cardinality of the set of rational numbers is ℵ0 (|ℚ| = ℵ0).  Therefore, the maximum number 

of blocks of the set of rational numbers cannot exceed ℵ0.  However, based on the definition of 
irrational Dedekind cuts, each cut (irrational number) is between the blocks of the set of rational 
numbers, and for each block there can be only one unique cut associated with it (say, to its right). 
Therefore, the maximum number of cuts cannot exceed the maximum number of blocks which 
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cannot exceed ℵ0.  In other words, the cardinality of the irrational numbers cannot exceed the 

cardinality of the rational numbers.  That is to say, |ℚ̅| ≤ |ℚ|.

Alternatively, if the cardinality of the set of irrational Dedekind cuts (irrational numbers) is 
greater than |ℚ| (as dogmatically asserted by mathematicians), then so is the cardinality of the set
of blocks defined by those cuts greater, since each block is associated with exactly one cut.  That 
contradicts the fact that the maximum number of blocks of the set of rational numbers cannot 
exceed |ℚ|.  Therefore, the cardinality of the set irrational numbers is not   greater than |ℚ|.  That 

is to say, |ℚ̅| ≤ |ℚ|.

However, mathematicians claim that, at least, |ℚ| ≤ |ℚ̅|.  So, in conclusion,

(|ℚ̅| ≤ |ℚ|) ∧ (|ℚ| ≤ |ℚ̅|) ⇒ (|ℚ| = |ℚ̅|).

2.4.3 Interleaving of Rational and Irrational Numbers
It is apparent from Theorems 10 and 11 that the rational and irrational numbers are interleaved.  
For any two distinct rational numbers, there is at least one irrational number in-between, and for 
any two distinct irrational numbers, there is at least one rational number in-between.

So, we have the set of real numbers as {…, r0, —, i0, —, r1, —, i1, —, r2, —, i2, —, …}, where 
the rk’s and ik’s are all different.  Each rk (a rational number) is associated with a unique ik (an 
irrational number), regardless of how dense the rk’s and ik’s are.  The interleaving ensures that the
cardinalities of the two sets are identical.  Therefore, ℵ0 = |ℚ| = |ℚ̅|.  The only way that there 
could be more ik’s than rk’s is that if, for some pairs of irrational numbers, there is no rational 
number in-between.  Because of the interleaving, there is no reason why the irrational numbers 
ought to “out number” the rational numbers (or vice versa).

In the limiting case of the interleaving, we have {…, r0, i0, r1, i1, r2, i2, …} for each distinct 
rational and irrational number.  Again, each rational number is associated with a unique irrational
number, therefore, ℵ0 = |ℚ| = |ℚ̅|.

2.4.4 Axiom of Infinity Disallows Transfinite Cardinals
The Axiom of Infinity in ZFC set theory effectively defines the set of natural numbers, allowing 
the formation of infinite sets.  That axiom does not allow the formation of sets that cannot be put 
to a one-to-one correspondence with it, such as the set of real numbers.  It does not define sets 
that have cardinalities greater than ℵ0.  So, a set with a cardinality greater than the one implied 
by the Axiom of Infinity cannot be deduced from the ZFC axioms.  To define such a set requires a
new axiom of set theory.  Any such set with higher cardinality will be inconsistent with the other 
axioms as shown in this document, so a new axiom is not an option.

So, in conclusion, (|ℚ| = |ℚ̅|).

Side Note: There is nothing in the definition of equivalent sets that prevents all infinite sets from 
being equivalent to each other.  In other words, the definition of equivalent sets regards the 
elements of all infinite sets as indivisible units, and in that respect, they are indistinguishable 
from one another  —  the definition does not depend on the nature of the elements of the two sets.
For example, the different natures of the rational numbers and the irrational numbers is irrelevant 
to the definition of equivalence.  Consequently, two infinite sets always satisfy the definition of 
equivalence.
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2.5 Cantor’s Power Set Theorem Refuted
Georg Cantor [1845–1918], and his lackeys, believe in their hearts that the cardinality of any set 
is strictly less than the cardinality of its power set (∀A (|A| < |℘(A)|)).  Such a belief is 
shamefully called “Cantor’s (Power Set) Theorem”.  However, a set can be defined that is an 
exception to that theorem, making the “theorem” FALSE.

Theorem: There exists a set, A, such that |A| = |℘(A)|

Proof:

∃A (∃X (A = ℘(A) ∪ X))).  [see below]

∃f (f ∈ {h : h:A → ℘(A)} ∧ f(x) = {x}).  [since for each x ∈ A there is {x} ∈ ℘(A)]

∃g (g ∈ {h : h:℘(A) → A} ∧ g(x) = x).  [since ℘(A) ⊆ A from the first step]

A ≾ ℘(A).  [since f is one-to-one and into]

|A| ≤ |℘(A)|.  [from cardinality theory]

℘(A) ≾ A.  [since g is one-to-one and into]

|℘(A)| ≤ |A|.  [from cardinality theory]

|A| = |℘(A)|.  [from the Schröder-Bernstein theorem] ∎

The crucial step is the first one that states that the set A exists.  Let X = {0} to satisfy the 
existence of X in the first step of the proof.  Then, the set A is defined as follows.

The set A satisfies the following conditions.

1. 0 ∈ A.

2. ∅ ∈ A.

3. ∀x (x ∈ A ↔ {x} ∈ A)

4. ∀x0, …, xn (x0, …, xn ∈ A ↔ {x0, …, xn} ∈ A)  [for all n ∈ ℕ+]

5. ∀x0, x1, x2, … (x0, x1, x2, … ∈ A ↔ {x0, x1, x2, …} ∈ A)

Conditions 2 to 5 show that all the members of ℘(A) are also members of A.  Condition 1 shows 
that the member of X is also a member of A.  By definition of A, A contains only the members of 
℘(A) and X, therefore A = ℘(A) ∪ X.  The first step of the proof of the Theorem is therefore TRUE.

Even if the Theorem above is rejected, Cantors Theorem is still refuted by Theorem 12 below.

2.5.1 Power Sets And the Diagonal Method
Cantor’s theorem can be refuted by using the diagonal method instead of the method shown in the
preceding section.  The following theorem says that, if a set has the same cardinality as that of 
the natural numbers, then the cardinality of the power set of that set is the same as the 
cardinality of the natural numbers.  This is represented by the following theorem.

Theorem 12: ∀S ((|A| = |ℕ|) ⇒ (|℘(A)| = |ℕ|))

Proof:

Each subset of A can be represented by a binary sequence where a 1 in the ith position of the 
sequence indicates that the ith element of A is in the subset, and a 0 indicates that it is not.  A list 
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of all the permutations of the binary sequence represents all the possible subsets of A.  The 
cardinality of the list of such sequences represents the cardinality of the power set of A.  The 
diagonal method can then be used on the list of sequences with the same failure (for the same 
reason) as when it is used with the unit interval.

As an illustration, for the set of natural numbers, {0, 1, 2, …}, we can theoretically form the 
following list of sequences (in no particular order).

     0, 1, 2,       ⋯       (elements of the set of       natural numbers)

     0, 0, 0, ⋯ (sequence represents no elements)

     1, 0, 0, ⋯ (sequence represents the element 0)

     0, 1, 0, ⋯ (sequence represents the element 1)

     1, 1, 0, ⋯ (sequence represents the elements 0 and 1)

     0, 0, 1, ⋯ (sequence represents the element 2)

     1, 0, 1, ⋯ (sequence represents the elements 0 and 2)

     0, 1, 1, ⋯ (sequence represents the elements 1 and 2)

     1, 1, 1, ⋯ (sequence represents the elements 1, 2, and 3)

     ⋮ ⋮ ⋮ ⋮

It can be proven that the list of binary sequences is equivalent to the unit interval, therefore the 
cardinality of ℘(A) is the same as that of [0, 1].  This document proves that the cardinality of 

[0, 1] is the same as that of ℕ, contrary to the subjective belief and fantasy of virtually all 
mathematicians at the time of this writing.  Note that each binary sequence corresponds to a 
number in base 2, which corresponds to a number in base 10 in the unit interval. ∎

If A = ℕ, then by Theorem 12, |ℕ| = |℘(ℕ)|, thus disproving Cantor’s theorem, ∀A (|A| < |℘(A)|).

2.6 The Death of the Transfinite Cardinals
It was proven in Chapter 1 that Cantor’s diagonal argument for claiming that the unit interval is 
non-denumerable is invalid.  It was proven in the first few sections of Chapter 2 that the set of 
irrational numbers precede the set of rational numbers (ℚ̅ ≾ ℚ), and vice versa (ℚ ≾ ℚ̅).  It was

also proven in the same chapter that Cantor’s theorem is FALSE (¬∀A (|A| < |℘(A)|)).  We now 
put these facts together to rid mathematics of the factitious idea of transfinite cardinal numbers 
(except for ℵ0).

The Schröder-Bernstein Theorem, (A ≾ B) ∧ (B ≾ C) ⇒ (A ∼ B), proves that (ℚ̅ ≾ ℚ) ∧ (ℚ ≾ 

ℚ̅) ⇒ (ℚ̅ ∼ ℚ).  And, by definition, |ℚ| = |ℚ̅|.  But mathematicians accept that |ℚ| = ℵ0.  

Therefore, |ℚ̅| = ℵ0.  That is to say that the irrational numbers are denumerable, contrary to the 
accepted belief by current mathematicians.

By definition, ℝ = ℚ ∪ ℚ̅, and so |ℝ| = |ℚ ∪ ℚ̅| = |ℚ| + |ℚ̅| = ℵ0 + ℵ0 = ℵ0, since ℚ ∩ ℚ̅ = ∅. 

But, because |ℕ| = |ℝ| = ℵ0, then ℕ ~ ℝ.  So, THE REAL NUMBERS ARE DENUMERABLE. 
Who would have thought?  —  well, the mathematicians before Cantor would have thought.

Note that, so far, there was no mention of ℵ1, ℵ2, ℵ3, and so forth.  Those fictions were invented 
by Cantor’s theorem (you know, the FALSE one).  But, by a recursive application of Theorem 12, 
|℘(…(℘(A))…)| = |ℕ| = |ℝ| = ℵ0 for all A equivalent to ℕ.  Bye-bye, ℵ1, ℵ2, ℵ3, and so forth.
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Epilogue

The previous two chapters mark the death of transfinite cardinal numbers (except for ℵ0) because
all infinite sets are denumerable.  The definition of transfinite cardinal numbers depended upon 
Cantor’s theorem and the non-denumerability of the real numbers.  This document has dismissed 
those two fantasies.  There seems to be no hope of any other set being proven non-denumerable.

This now raises the question: How is it that mathematicians (and logicians and others) failed to 
recognise that the diagonal argument and the power set argument are invalid? And, how is it that 
they failed to recognise that the very definition of Dedekind cuts for irrational numbers proves 
that the set of irrational numbers is equivalent to the set of rational numbers?

The answers to these questions are speculative, but here are some possibilities.

1. What mathematicians may have done was to interpret the diagonal method independently of 
the whole argument (for example, they defined the method to construct a real number in the 
unit interval using an arbitrary   digit at each decimal place), then attempted to project that 
method to the context of the antithesis without realising that the diagonal number was being 
used in its own definition in that context.

2. Perhaps they assumed, hypothetically, that the numbers in the unit interval are denumerable, 
then tried to “construct” a number (which they dogmatically asserted to exist) from that set, 
and then concluded that a number can always be “constructed” that does not belong to the 
set, so they concluded that such a denumerable set cannot exist.  Here, again, they failed to 
realise that the diagonal number would  , by the antithesis itself, be in that set.  Therefore, no 
such number can be constructed (as shown in this document).  Mathematicians dogmatically 
claim that the diagonal number is guaranteed to not be in the list of the antithesis, without 
realising that the construction method is self-contradictory.  So, the only thing that the 
construction method guarantees is that the method is self-contradictory under the assumption
of the antithesis.  Similarly for the power set argument.

3. Perhaps, by presenting the list representing the antithesis, and assuming that the diagonal 
number exists but is not in the list, they failed to realise that the list is now a different list 
from the original antithesis list (by the implication of the diagonal method), but continued to 
assume that it is the same list because they fixated, in their minds, that it is the same list.  As
a consequence, they wrongly imagined that it was impossible for “the (original) list” to 
contain all the reals in the unit interval, when, in logical reality, it is only the new   list that 
does not contain the diagonal number.  In other words, they wrongly thought that the 
diagonal method applied to the original list, when, in fact, for the method to be valid, it 
applies to a proper subset of the original list but not the original list itself.  Similarly for the 
power set argument.

4. Perhaps, mathematicians and logicians and others perceive some sort of mystique in the idea 
of having different “levels” of infinity, and refuse to admit that their delusion is just a 
fantasy.  As a consequence, they stubbornly refuse to admit that there is anything wrong with
the diagonal and power set arguments.

5. Because of the wording of the argument, using such words as “construct”, “choose”, and 
other misleading terms, they imagined that the diagonal argument is literally about trying to 
construct some sort of metaphysical or hypothetical list, and so they imagined from the 
presentation that such a list could not be constructed.

6. Perhaps, mathematicians and logicians are not as clever as they pretend to be, and do not 
quite understand what genuine logic is about (was it Bertrand Russell who allegedly said 
“Mathematics … is a subject in which we do not know what we are talking about …”?).

22
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With the Dedekind cuts, maybe no one thought of using the irrational number version of the 
definition, or no one made the connection between the concept of equivalence and Dedekind cuts 
(admittedly, there is not an extremely obvious connection).

It is incredible that mathematicians and others cannot see an obvious flaw in a children’s 
argument (the diagonal argument especially). The reason for that failure may be that 
mathematicians and logicians use too much unsubstantiated and confused subjective intuitions 
instead of logical reasoning.  This is what happens when they give priority to their intuitions over
genuine logical thinking.

Side Note: I find it personally disturbing to imagine how clueless I would have to be to not 
recognise the obvious self-contradiction in the diagonal method.

3.1 Consequences of the Death of the Transfinite Cardinals
Of course, there are some advantages and disadvantages with the death of the higher transfinite 
cardinal numbers.

3.1.1 Advantages
Some of the advantages of now realising that all infinite sets are denumerable include:

1. Mathematics will become more advanced as a result of the fact that there are no higher 
transfinite cardinal numbers, because it is always of great benefit to mathematics (and 
everything else) when bullshit is removed from it.

2. Transfinite cardinal arithmetic will now be simpler: if at least one of α and β are transfinite 
cardinal numbers then α + β = αβ = αβ = ℵ0.

3. Certain so-called paradoxes that resulted from Cantor’s power set “theorem” can now be 
ditched.

4. Mathematics lecturers can now shorten their courses on transfinite cardinals, and use the 
spare time to go fishing (or better still, to learn to use some rigorous mathematical logic).

5. Mathematics teachers now need not embarrass themselves trying to defend the indefensible 
when explaining the diagonal argument to intelligent students.

6. Young mathematical students now have something meaningful to write home about.

3.1.2 Disadvantages
Some of the disadvantages of now realising that all infinite sets are denumerable include:

1. Mathematics books need to be rewritten.

2. Mathematics courses need to be redesigned.

3. AI (artificial intelligence) needs to be retrained.

4. Mathematics dictionaries need to be rewritten.

5. Encyclopaedias need to be rewritten.

6. Internet websites need to be rewritten.

7. Apologies need to be made.

All this due to mathematical carelessness and incompetence in providing valid proofs.

Other disadvantages are:

1. Most mathematical theorems now need to be questioned given that most mathematicians 
cannot even see an obvious flaw in a children’s (diagonal) argument.

2. The volumes of mathematical and philosophical books written on transfinite cardinals will 
need to be burned, adding to the problem with global climate change.

3. Psychiatrists will now become overworked healing all the bruised mathematical egos.
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3.2 Concluding Remarks
So there we have it.  The higher transfinite cardinal numbers  —  it was all just fantasy.  So much
for the peer review system (maybe it ought to be called the “peer lackey system”).  Looks like the
continuum has just lost its “power” (the one that it didn’t have).  And that continuum hypothesis 
thing  —  that nonsense can now be ditched.

In summary, both the diagonal and power set the arguments use a similar strategy, as follows.  
Both arguments attempt to prove a non-equivalence between two sets by utilising a proof by 
contradiction.  The antithesis of the non-equivalence (ie: the equivalence of the two sets) involves
a function.  The arguments attempt to prove that the function cannot   be a bijection, meaning that 
the function’s range must   be a proper subset of the function’s co-domain (if the function is a 
bijection, its range and co-domain will be equal).  The arguments attempt to “construct” an entity 
that exists in the co-domain but not in the range of the function.  The contradiction resulting from
the “construction” of that entity is claimed to be the contradiction required by the proof by 
contradiction, thereby concluding that function cannot be a bijection.

The flaw in both arguments is mainly this (as proven in this document):

1. The definition of the “constructed” entity is self-contradictory   when used on the original   
(hypothesised) function’s range (the range is assumed to be equal to the co-domain), so the 
entity cannot exist and the argument fails.  Note that it is invalid   to use the entity’s self-
contradiction as the contradiction required by the proof by contradiction.

2. The definition of the “constructed” entity is not self-contradictory when used only   on a 
proper subset of the original (hypothesised) function’s range.  But, in that case, no 
contradiction with the original range arises, so the argument fails.  That the entity is not a 
member of a proper subset of the range does not   prove that the function’s range cannot be 
equal to its co-domain (ie: that it cannot be a bijection).

Besides the invalid arguments, this document proves that all infinite sets are indeed equivalent 
anyway.

So, how long will it take mathematicians (and others) to cast transfinite cardinals into the bowel 
movements of history (where they belong)?  —  50 years? 100 years? 200 years?  Such is the 
stubbornness of human ignorance.

The Final Word: We can say that the transfinite cardinals bled to death from Dedekind cuts 
(except for the sole survivor, ℵ0, poor thing, all alone in this big wide world of mathematics).

ℵℵℵ  TRANSFINITE CARDINALS  ℵℵℵ

☺   Rest In Peace   ☺

may the power of the continuum abandon them
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Appendix A

Proof of Theorems

This appendix presents the proofs of Theorems 1, 2, and 3.

A.1 Proof of Theorem 1
Proof of Theorem 1: ∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊥

Proof 1:

∃r∈S (∀x∈S (r ≠ x)) ⇔  [left expression of Theorem]

∃r∈S (∀x∈{r} (r ≠ x) ∧ ∀x∈S\{r} (r ≠ x))  ⇔  [separation]

∃r∈S ((r ≠ r) ∧ ∀x∈S\{r} (r ≠ x)) ⇔  [simplification]

∃r∈S (⊥) ⇔ ⊥.  [because (r ≠ r) ⇔ ⊥]

∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊥  [deduction from steps above] ∎

Proof 2:

(∀r∈S (∃x∈S (r = x)) ⇔ ⊤) ⇒  [tautology]

(¬∀r∈S (∃x∈S (r = x)) ⇔ ¬⊤) ⇒  [negation]

(∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊥)  [De Morgan] ∎

Proof 3:

Lemma: a ∈ A ⇔ ∃x∈A (a = x).  [tautology]

(∀r∈S (r ∈ S) ⇔ ⊤)  [tautology]

(∀r∈S (∃x∈S (r = x)) ⇔ ⊤)  [by Lemma]

(¬(¬∀r∈S (∃x∈S (r = x))) ⇔ ⊤)  [double negation]

(¬∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊤)  [De Morgan]

(∃r∈S (∀x∈S (r ≠ x)) ⇔ ⊥)  [negation] ∎

A.2 Proof of Theorem 2
Proof of Theorem 2: (S2 = S1) ⇒ ¬∃r∈S1 (∀x∈S2 (r ≠ x))

Lemma: a ∈ A ⇔ ∃x∈A (a = x)  [tautology]

S2 = S1 ⇒  [antecedent of Theorem]

∀y∈S2 (y ∈ S1) ∧ ∀r∈S1 (r ∈ S2) ⇒  [definition of antecedent]
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∀r∈S1 (r ∈ S2) ⇒  [deduction]

∀r∈S1 (∃x∈S2 (r = x)) ⇒  [by Lemma]

¬(¬∀r∈S1 (∃x∈S2 (r = x))) ⇒  [double negation]

¬∃r∈S1 (∀x∈S2 (r ≠ x)).  [De Morgan]

(S2 = S1) ⇒ ¬∃r∈S1 (∀x∈S2 (r ≠ x))  [deduction from steps above] ∎

A.3 Proof of Theorem 3
Proof of Theorem 3: (S2 ⊂ S1) ⇒ ∃r∈S1 (∀x∈S2 (r ≠ x))

Lemma 1: a ∈ A ⇔ ∃x∈A (a = x)  [tautology]

Lemma 2: a ∉ A ⇔ ∀x∈A (a ≠ x)  [by negation of both sides of Lemma 1]

S2 ⊂ S1 ⇒  [antecedent]

S2 ⊆ S1 ∧ S2 ≠ S1 ⇒  [definition of antecedent]

∀z∈S2 (z ∈ S1) ∧ ¬(∀y∈S2 (y ∈ S1) ∧ ∀r∈S1 (r ∈ S2)) ⇒  [definition expansion]

∀z∈S2 (z ∈ S1) ∧ (¬∀y∈S2 (y ∈ S1) ∨ ¬∀r∈S1 (r ∈ S2)) ⇒  [De Morgan]

∀z∈S2 (z ∈ S1) ∧ ¬∀y∈S2 (y ∈ S1) ∨ ∀z∈S2 (z ∈ S1) ∧ ¬∀r∈S1 (r ∈ S2) ⇒  [distribution]

⊥ ∨ ∀z∈S2 (z ∈ S1) ∧ ∃r∈S1 (r ∉ S2) ⇒  [complement and De Morgan]

∃r∈S1 (r ∉ S2) ⇒  [deduction]

∃r∈S1 (∀x∈S2 (r ≠ x)).  [by Lemma 2]

(S2 ⊂ S1) ⇒ ∃r∈S1 (∀x∈S2 (r ≠ x))  [deduction from steps above] ∎

Side Note: If you’re a pure mathematician and don’t understand the mathematical logic above, I 
suggest that you get yourself educated in formal mathematical logic before you pretend to be an 
expert in understanding and producing mathematical proofs (especially Cantor’s diagonal and 
power set arguments, and similar arguments).
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Proof by Contradiction

This appendix shows the proper meaning of a proof by contradiction, and the proper process to 
conduct such a proof.  Unfortunately, the meaning and logic underlying a proof by contradiction 
seems to be misunderstood by most mathematicians (and logicians).  This appendix explains the 
proper logical basis and strategy for such a proof.

B.1 Introduction
A proof in pure mathematics is basically a sequence of statements that are logically derived from 
any of the axioms (typically ZFC axioms), possibly in conjunction with other conditions, 
concluding in a final statement.  The final statement is called a “theorem”, which may itself be a 
deductive implication.  The most important point here is that all   the statements must be logically 
derived  , meaning that they must be deductive implications  .  For example, if A represents any of 
the axioms and T represents a theorem, then the proof of the theorem would be represented as 
‹A ⇒ T›.  Alternatively, if A represents any of the axioms, C represents a condition, and F 

represents the final statement, then the proof of the theorem ‹C ⇒ F› would be represented as 

‹A ⇒ (C ⇒ F)›.  Note that ‹A ⇒ (C ⇒ F)› is logically equivalent to ‹(A ∧ C) ⇒ F›.  Of course, a 
proof may involve a large number of steps before the theorem is finally deduced.  It is absolutely 
important to note that NO arbitrary assumptions are allowed in a proof.

A deductive implication is an implication that is logically necessarily   TRUE.  “Necessarily TRUE” 
means TRUE for all   possible logic values (commonly called “truth values”) of the involved 
statements.  For example, ‹(A ∧ B) ⇒ A› is a deductive implication because the statement is TRUE

for all logic values of A and B.  The statement ‹(A ∧ B) ⇒ C› is not   a deductive implication 
because it is not TRUE for all logical values of A, B, and C; it is correctly represented as 
‹(A ∧ B) ⇏ C›.

The authoritative definition of a deductive implication is

A ⇒ B  =df ((A ∧ ¬B) ⇔ ⊥),

where P ⇔ Q  =df □(P ∧ Q ∨ ¬P ∧ ¬Q), and □ means ‘the argument is necessarily TRUE’.

For completeness, the definition of a contingent implication is

A → B  =df ((A ∧ ¬B) ↔ ⊥),

where P ↔ Q  =df (P ∧ Q ∨ ¬P ∧ ¬Q).

The following two definitions may also be useful.

¬(□A)  =df ⋄(¬A) and □(¬A)  =df ¬(⋄A),

where ⋄ means ‘not FALSE for all   possible logic values of the argument’.

Side Note: Note that there is no talk of “possible worlds” here  —  such a fanciful notion is 
completely unnecessary and not required by the laws of logic.

Fun Fact: (⊥ ∧ ¬A) ⇔ (A ∧ ⊥) ⇔ ⊥.  So, ‹⊥ ⇒ A› and ‹A ⇒ ⊤› by definition, for any A.  

Therefore, (A ⇒ ⊥) ⇔ (A ⇔ ⊥).
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There are a few techniques for proving a theorem in logic and pure mathematics.  One of those 
techniques is called “proof by contradiction”.  This technique directly utilises the actual 
definition of a deductive implication even though it is traditionally called an “indirect proof”.

B.2 The Meaning of a Proof by Contradiction
A proof by contradiction is simply the application of the definition of a deductive implication.  
For example, to prove ‹(C ∧ D) ⇒ C›, the definition of deductive implication is applied to get 

‹(C ∧ D ∧ ¬C) ⇔ ⊥›, which, by inspection, is a TRUE statement.  If A represents any of the 

axioms, and T represents a theorem, then to prove the theorem from the axioms (A ⇒ T), all that 

is required is to prove ‹(A ∧ ¬T) ⇔ ⊥›.  So, if the conjunction of the negation of a theorem and 
the axioms deductively imply a necessary falsehood (typically miscalled a “contradiction”), then, 
by definition, the axioms deductively imply the theorem.  Of course, proof by contradiction can 
be used for arbitrary deductive implications.  For example, to prove ‹P ⇒ Q› by contradiction 

requires the proof of ‹(P ∧ ¬Q) ⇔ ⊥› for any statements P and Q.  In Classical Logic and 
Mathematics this is expressed as “the conjunction of P and ¬Q is a contradiction”.

Note especially that there was no mention of “assuming the contrary”  —  no assumptions 
whatsoever have been utilised in the paragraph above.  A proof by contradiction is purely a 
deductive process by applying the actual definition of a deductive implication; there are no 
assumptions to be made, hypothetically or otherwise.

B.3 The Proper Procedure for the Proof
Consider the deductive implication, A ⇒ T, to be proven by contradiction.  T will be called the 
‘thesis’, and its negation, ¬T, will be called the ‘antithesis’.  The intention is to determine 
whether ‹(A ∧ ¬T) ⇔ ⊥›.  Typically, it is not immediately obvious whether ‹A ∧ ¬T› is 
necessarily FALSE (ie: a contradiction).  In practice, some deductions need to be made from the 
conjunction so that it does become obvious that it is necessarily FALSE.

Now a potential problem can arise in the deductions.  An inept mathematician (or logician) may 
introduce an arbitrary contradiction into those deductions (as was done with the diagonal and 
power set arguments), thereby feigning that the proof has succeeded.  As a safeguard, the 
following process should be adopted.

Two distinct lines of derivations need to be made, one from the axioms (A) and another from the 
antithesis (¬T).  Neither line of logic is to involve the thesis, and the axiom line must not   involve 
the antithesis directly or indirectly (if the antithesis is removed, the line of logic should still be 
valid).  The conclusions from both lines need to be contradictory together, not separately.

Symbolically, we have the line from the axioms, A ⇒ … ⇒C1, and the line from the antithesis, 

¬T ⇒ … ⇒ C2.  C1 and C2 would be simple enough to conclude that ‹(C1 ∧ C2) ⇔ ⊥› (ie: that C1 

and C2 are contradictory) by inspection.  (It is known that if ‹(C1 ∧ C2) ⇔ ⊥› then ‹(A ∧ ¬T) ⇔ 

⊥›.)  If the contradiction is proven, then ‹A ⇒ T› will have been proven as well (by definition).

If a deductive implication of the form ‹A ⇒ (C ⇒ T)› is to be proven by contradiction, then the 

logically equivalent deduction, ‹(A ∧ C) ⇒ T)›, can be used.  The axiom line would then be 

deductions from (A ∧ C), and the antithesis would be ¬T.

To ensure that the contradiction is between the axioms and the antithesis, it is ABSOLUTELY 
important to ensure that each line of logic is logically valid.  This means that no assumptions are 
to be made; each statement in each line of logic must be logically derived and validated.  The 
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antithesis is not   assumed to be TRUE; it is simply considered, as required by the definition of 
deductive implication.  It is also ABSOLUTELY important that neither line of logic results in a 
necessary falsehood (contradiction).  If either line of logic results in a necessary falsehood, then, 
of course, that would imply ‹(C1 ∧ C2) ⇔ ⊥›.  But, in that case, the contradiction would be the 
result of an introduced contradiction, rather than the result of A and ¬T being contradictory 
together.  If a necessary falsehood does result from one of the lines of logic, then either an error 
has been made or the lines are not separated enough.

Both the diagonal and power set arguments are examples of an invalid proof by contradiction.  In 
both cases, the contradiction is derived from the antithesis line (because it involves the 
antithesis), not   from a conjunction of the axioms with the antithesis.  Furthermore, in both cases, 
an arbitrary assumption is made by dogmatically assuming the existence of the “constructed” 
entity (the definition of the entity is defined to be self-contradictory under the condition of the 
antithesis, so no such entity can exist).  In short, the contradiction is introduced   (intentionally?), 
not deduced.

Another way to reduce the possibility of error is to use mathematical logical rather than clever 
intuitive wordings.  For Classical Logic and Mathematics, this rules out “constructive” proofs.  
Such proofs are subjective and can be misleading (as we have seen in the diagonal and power set 
arguments); construction is best left for the building industry.  A privately conceived 
“constructive” proof should finally be converted to a proper logical proof using mathematical 
logic or equivalent wording before being presented to the public.

A simple illustration   of using proof by contradiction the proper way follows.

Theorem  : (a < b) ∧ (b < c) ⇒ a < c.

Proof by contradiction.

Antithesis: a ≮ c.

From the antithesis: (a ≮ c) ⇒ (a ≥ c).

From the axioms: (a < b) ⇒ (b – a > 0).  (b < c) ⇒ (c – b > 0).  Therefore (b – a) + (c – b) > 0, 
since the addition of two positive numbers is a positive number.  But, (b – a) + (c – b) = c – a.  
Therefore c – a > 0.  But (c – a > 0) ⇒ (c > a) ⇒ (a ≱ c).

The antithesis contradicts the axioms, therefore (a < b) ∧ (b < c) ⇒ a < c.

Notice, firstly, that no assumption of anything being TRUE has been made in the proof.  Secondly, 
there are two distinct   lines of logic; one from the antithesis, and another from the axioms (and the
antecedent of the theorem).  If either line of logic had resulted in a contradiction, then an error 
would have been made somewhere in the argument (sound familiar with the diagonal and power 
set arguments?).  Alternatively, the two lines of logic were not properly separated.  Thirdly, and 
most importantly, the line of logic from the axioms (and antecedent) does not involve the 
antithesis in any way.

B.4 The Traditional Procedure for the Proof
In Classical Logic and Mathematics, an ‘assumption’ is a statement that is taken to be TRUE for 
the purpose of an argument, and typically used as the antecedent in an implication.  An 
assumption can also be made when a statement is split into possible cases, one of which is the 
TRUE case.

However, the expression “A is TRUE” is ambiguous.  It could mean ‘A = TRUE’, or ‘A ↔ ⊤’.  The 

former means that A indicates only   the value TRUE.  The latter is equivalent to just A ((A ↔ ⊤) 

⇔ A).  Conversely, “A is FALSE” could mean ‘A = FALSE’, or ‘A ↔ ⊥’ (or just ¬A).
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In a traditional proof by contradiction, the negation of the conclusion (antithesis) of a theorem is 
“assumed to be (hypothetically) TRUE” for the purpose of the proof.  This business of assuming 
that the antithesis, ¬T, is TRUE can only mean ‹¬T ↔ ⊤›, that is, it just means that ¬T is being 
considered.  It cannot mean ‹¬T = TRUE› because that would be to assume that ¬T has only one 
logic value (TRUE), which would eventually be proven to be the wrong value.  However, 
mathematicians do seem to mean ‹¬T = TRUE›, and then give some sort of convoluted explanation 
of why such an assumption implies its exact opposite.  So, assuming that the antithesis is TRUE is 
just verbiage that has no logical merit in itself, but is just an indication that the consideration of 
the antithesis is a requirement by the proof by contradiction.  For technical accuracy, in a 
traditional proof by contradiction, one should merely “consider” the antithesis, not “assume that 
the antithesis is TRUE”.  In any case, in a logical deduction, there should not be any assumptions 
of TRUE or FALSE, other than when considering separate cases of logic values.

The most serious drawback in the traditional proof by contradiction is the absence of distinctly 
and clearly separating the antithesis lines of logic from the non-antithesis lines.  The problem 
here is that inept mathematicians could inadvertently (and even deliberately) introduce a self-
contradictory definition, claiming that the resulting contradiction is the one required by the proof 
by contradiction (there is no need to give two examples here!).

In summary, in a traditional proof by contradiction, (1) do not use meaningless expressions like 
“assume such-and-such [the antithesis] is TRUE” (say “consider such-and-such [the antithesis]” 
instead), (2) distinctly separate the lines of logic that do not   involve the antithesis clearly from 
the lines of logic that do, making sure that no contradiction results from either of those two sets 
of lines.  In short, use the proper method of proof by contradiction as described in the previous 
section.
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Glossary

B
bijection

A function, f, such that f:A → B is one-to-one and onto.  Consequently, there is a one-to-one 
correspondence between A and B, and also A and B are equivalent (A ∼ B).

C
cardinal number |A|

The family of sets that are equivalent to a given set, A, denoted by |A|.  There are other 
equivalent ways of defining cardinal number.  The cardinal number of the set of natural 
numbers, ℕ, is denoted by ℵ0 (ie: |ℕ| = ℵ0).

|A|  =df {X : X ∼ A}

cardinality
The cardinal number of a set.

D
denumerable

An infinite set that is equivalent to the set of natural numbers, ℕ.  An infinite set, A, is said 

to be denumerable if A ∼ ℕ.

E
equivalent (sets) A ∼ B

Two sets, A and B, are said to be equivalent if it is possible   to put them into a one-to-one 
correspondence with each other, denoted by A ∼ B.  The statement A ≁ B denotes that two 
sets, A and B, are not equivalent (it is impossible to put them into a one-to-one 
correspondence with each other).  Note: two equivalent sets have the same cardinality.

A ∼ B  =df

 ∃f (f ∈ {g : g:A → B} ∧ ∀y∈B (∃x∈A (f(x) = y)) ∧ ∀x1, x2∈A ((f(x1) = f(x2)) → (x1 = x2)))

F
finite cardinal numbers

The set of cardinal numbers that are less than ℵ0, {x : x < ℵ0}.  These are the cardinal 
numbers for finite sets.

I
infinite set

The set A is said to be infinite if there exists X such that X ⊂ A and X ∼ A.
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N
natural numbers ℕ

The set of positive whole numbers together with the number zero, denoted by ℕ, or without 

the number zero, denoted by ℕ+.

ℕ  =df {0, 1, 2, …}     ℕ+  =df {1, 2, 3, …}

non-denumerable
An infinite set that is not equivalent to ℕ.  An infinite set, A, is said to be non-denumerable if

A ≁ ℕ.

P
power set ℘(A)

The set of all subsets of a set, A, denoted by ℘(A).

℘(A)  =df {X : X ⊆ A}

precede (sets) A ≾ B

A set A is said to precede a set B if there exists X such that X ⊆ B and X ∼ A.  A ≾ B denotes 

that A precedes B.  If A ≾ B then, by definition, |A| ≤ |B|.

proper subset A ⊂ B
The set, A, whose entire members are also members of a set, B, where A is not equal to B, 
denoted by A ⊂ B.

A ⊂ B  =df ∀x (x ∈ A → x ∈ B) ∧ (A ≠ B)

R
real numbers ℝ

The union of the set of rational and irrational numbers, denoted by ℝ.

S
strictly precede (sets) A ≺ B

A set A is said to strictly precede a set B if A precedes B and A is not equivalent to B (A ≾ B 

∧ A ≁ B).  A ≺ B denotes that A strictly precedes B.  If A ≺ B then, by definition, |A| < |B|.

subset A ⊆ B

The set, A, whose entire members are also members of a set, B, denoted by A ⊆ B.

A ⊆ B  =df ∀x (x ∈ A → x ∈ B)

T
transfinite cardinal number

The set of cardinal numbers that are greater than or equal to ℵ0, {x : ℵ0  x}.  These are the 
cardinal numbers for infinite sets.
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U
unit interval

The real numbers between zero and one, inclusively, denoted by the closed interval [0, 1].  
Note that the brackets are in bold type when indicating open or closed intervals.

[0, 1]  =df {x : 0 ≤ x ∧ x ≤ 1}
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Mathematical Symbols

|A| The cardinal number of A.

A ∧ B Logical conjunction of A and B.

A ∨ B Logical disjunction of A and B.

¬A Logical negation of A.

⊤ Necessary truth.

⊥ Necessary falsehood.

A ⇒ B Logical implication between A and B.  Also called a deductive implication.

A ⇔ B Logical equivalence between A and B.

A → B Contingent implication between A and B.  Also called a non-deductive implication.

A ↔ B Contingent equivalence between A and B.  Also called a bi-conditional.

ß  =df S The symbol ß is defined by the statement S.

A ≝ B A and B are identical by definition.

A ∼ B A and B are equivalent.

A ≁ B A and B are not equivalent.

∃… The existential quantifier (“‹there exists›\‹at least one of› something such that …”).

∀… The universal quantifier (“for all\each\‹every one› of something such that …”).

f:A → B The function f from the domain A to the co-domain B.

dom f The domain of the function f.

ran f The range of the function f.

cod f The co-domain of the function f.

f(x) The image of x under the function f.

ℕ The set of natural numbers (includes the number 0).

ℕ+ The set of positive natural numbers (excludes the number 0).

ℝ The set of real numbers.

ℚ The set of rational numbers.

ℚ̅ The set of irrational numbers.
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∅ The null set (called the “empty set” by unprofessional mathematicians who still use 
the name taught to them in kindergarten).

A ≾ B The set A precedes the set B.

A ≺ B The set A strictly precedes the set B.

A\B The set difference between sets A and B.  Also called relative complement of B in A.

℘(A) The power set of the set A.

A ⊆ B The set A is a subset of the set B.

A ⊂ B The set A is a proper subset of the set B.

ℵ0 The smallest (and only) transfinite cardinal number  (the other transfinite cardinals 
are just smoke and mirrors).

[0, 1] The unit interval.
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