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Abstract

The purpose of this document is to prove positively and rigorously that there are no transfinite
cardinal numbers, other than N, by showing that the traditional arguments of their existence are

logically invalid, and proving that there is only the one transfinite cardinal number, K.

The definition of transfinite cardinal numbers depends upon the non-denumerability of the set of
real numbers and Cantor’s power set theorem. This document proves that the diagonal number
“constructed” in the diagonal method, and the subset “constructed” in the power set argument are
both self-contradictory under the condition of the antithesis, and consequently, cannot be used for

the claimed existence of transfinite cardinal numbers beyond K.

The document proves, with certainty, that the set of irrational numbers is equivalent to the set of
rational numbers, using the irrational number version of Dedekind cuts, with the consequence that

transfinite cardinal numbers beyond X, cannot exist.




Preface

In the year 2007, I published a document on the https://www.victella.me website titled

The Collapse of Transfinite Cardinals. In that document I proved, rigorously, that Cantor’s
arguments for the non-denumerability of the set of real numbers and the existence of higher
transfinite cardinals were logically invalid, but I was still open to the possibility of the existence
of those cardinals. I abandoned interest in the subject since 2007, but certain events in 2024
revived my interest.

I considered the notion of partitioning the unit interval into smaller and smaller disjoint sets. It
was obvious that, no matter how many times that the unit interval is recursively “split”, the
number of disjoint sets will always be equal to the number of “splits”. This reminded me of
Dedekind cuts, which are a kind of “splitting” of the rational number line. So I considered
whether I could use the irrational version of Dedekind cuts to prove rigorously that the rational
numbers and irrational numbers are equivalent. And, not to my surprise, that was indeed the case.

In this document, not only do I definitely and rigorously prove that Cantor’s arguments are
invalid, but also prove, using the irrational version of Dedekind cuts, that the higher transfinite
cardinals do not exist — that the real numbers and all infinite sets are indeed denumerable.

The ideas in this document have been conceived entirely by me (a retired but non-practising pure
mathematician) independently of any other work that may be out there, except, of course, for the
standard mathematical definitions and theorems.

Victor Vella

Perth, Western Australia
15 March 2025
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Introduction

A cardinal number indicates the number of elements in a finite set. Cardinal numbers were

generalised by Georg Cantor [1845-1918] to indicate the relative number of elements in infinite
sets using the notion of equivalent sets. Cantor believed, as do modern mathematicians, that the
“size” of some infinite sets is greater than the size of others. The different “sizes”, indicated by

the cardinal numbers of those sets, are symbolised by Ry, N, N, and so forth. Those cardinal

numbers are called transfinite cardinal numbers as opposed to the cardinal numbers relating to
finite sets, which are called finite cardinal numbers. However, the basis for believing that
infinite sets have different cardinalities 1s seriously flawed. Moreover, it can be proven
rigorously and conclusively that infinite sets do not have different cardinalities. The only

transfinite cardinal number that can be admitted is No.

It is assumed that the reader has some familiarity with Cantor’s diagonal argument, and the
argument for Cantor’s power set theorem. It is also assumed that the reader is familiar with
mathematical logic and has a proper understanding of logical proofs and deductions involving
quantifiers. This document is written for mathematicians or readers who are mathematically
proficient.

Also, in this document, the term “invalid” used in the context of logical arguments means “not
abiding by the proper rules of logic” rather than the flawed and ill-conceived definition that
logicians and mathematicians use. “Invalid” in this document does not necessarily mean FALSE.

The first chapter proves in detail that the diagonal argument and the argument for Cantor’s power
set theorem are invalid. The second chapter proves rigorously that all infinite sets are
denumerable.
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The Diagonal Argument

1.1 Preliminaries

The principal argument for believing in the higher transfinite cardinals is the one based on
Cantor’s diagonal argument. That sloppy, intuitively-based argument uses Cantor’s diagonal
method as its principal technique. The diagonal method is invalid, as will be proven in this
document using rigorous mathematical logic. Furthermore, again using rigorous mathematical
logic, this document will prove conclusively that all infinite sets are equivalent to the natural

numbers, therefore proving that there are no more cardinal numbers beyond K.

The problem is with the generalised form of the diagonal method, which claims that it is possible
for there to be an entity belonging to a set of all such entities but different from each member of
that set — the diagonal method used in the diagonal argument is just a specific case of that
general method. But, that general method is obviously self-contradictory, and consequently, so is
the diagonal method. Cantor’s power set theorem also uses a specific case of that general
method, and is therefore also self-contradictory.

It 1s actually impossible for there to be an entity belonging to a set of all such entities but
different from each member of that set. In mathematical logic, such a claim is written as follows.

AreS (Vxes (r # x)) (1)

The statement above says that there is a member, 7, belonging to a set, S, such that for each
member, x, of the set S (including that member r), that r is different from x. Now, since one of

the x’s is an 7, then » # x becomes r # r in that case, which is necessarily FALSE (ie: a

contradiction) making the statement self-contradictory. That self-contradictory statement is
expressed as

Theorem 1: 3r€S (VxeS(r #x)) & L

where L is the symbol for necessary falsehood. The left side of the theorem is self-contradictory
by itself in all cases and in all contexts; there are no exceptions, including when used with the

diagonal argument. For example, it is impossible for the same given triangle to be different from
each member of the set of all triangles. Theorem 1 is proven in A.1_Proof of Theorem 1.

Two cases relating to Theorem 1 are of interest.
Theorem 2: (S, = §)) = —3Ires; (VxS (r # x))

Theorem 2 says that, if two sets, S; and S, are equal, then it is not the case that there is a member
of S| that differs from each member of S,. This theorem is consistent with Theorem 1. Theorem
2 is proven in A.2_Proof of Theorem 2.

Theorem 3: (S, C §)) = JAres; (VxeS: (r # x))

Theorem 3 says that, if the set S, is a proper subset of the set S;, then there is a member of S, that
differs from all members of S,. Note that the consequent of Theorem 3 is similar to statement (1),
but, in this case, the statement is not self-contradictory. For example, there is at least one
rectangle that is different from each member of the set of all squares; the set of all squares being
a proper subset of the set of all rectangles. Theorem 3 is proven in A.3_Proof of Theorem 3.
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1.2 Equivalent Sets

The cardinality of a set depends on the notion of equivalent sets. Two sets, 4 and B, are said to
be equivalent, denoted by <4 ~ B>, if and only if the following statement is TRUE.

df (fe {g: 2.4 —> B} ANVyeB (Ax€A4 (f(x) =) A Vxi, x2€A4 ((x1 # x2) — (f{x1) # f(x2)))) (2)

Statement 2 is not as complicated as it appears. It says that there is a function, f, whose domain is
A and co-domain is B (f:4 — B), where each member, y, of B has a pre-image, x, in 4 (VycB

(dxe4 (f(x) = v))), and each member of 4 maps to a distinct member of B (Vx;, xo€4 ((x; # x»)
— (f(x1) # f(x2)))). In other words, there is a one-to-one correspondence between the sets 4 and

B (A ~ B). Now, if there is such a function (ie: if the members of the two sets correspond one-to-

one), then those two sets are said to be equivalent. It is vitally important to note that, if there is
such a function f, then the range of f (ran f) is identical to the co-domain of f'(cod f). That is to
say, ran f = cod f («cod /= B> by definition), which is a consequence of statement 2. By

contraposition, if for all functions f; ran f # cod f, and because «ran f < cod f> by definition, if
for all functions f, ran f C cod f, then 4 + B.

In summary: if there is at least one function, f:4 — B, that is bijective then 4 ~ B and ran f=
cod /= B. If for all functions, f:4 — B, ran f C cod f, then 4 + B.

1.3 Cardinal Numbers

In mathematics, it is useful to define the number of elements in a set (the elements of a set are
always distinct). To be useful, the definition needs to be represented by mathematical statements.
A cardinal number is the family of sets that are equivalent to a given set — each member of
such a family of sets is associated with the same cardinal number. Note that a cardinal number is
not the same as a natural number, but there is a correspondence between cardinal numbers and
natural numbers for finite sets.

The cardinal number for a finite set is identical to the cardinal number for the initial sequence of
positive natural numbers that are equivalent to that set. For example, the set 4, where 4 = {10, 3,

30.7, —22}, is equivalent to the initial sequence of positive natural numbers {1,2,3,4} (4 ~ {1,

2,3, 4}). Therefore, the cardinal number of A is the same as the cardinal number of {1, 2, 3, 4}
(|4 =1{1,2,3,4}|). Now, the symbol for the cardinal number of an initial sequence of positive
natural numbers is the same as the symbol for the maximum number in that sequence. In our
example, the maximum number in {1, 2, 3, 4} is 4, so the cardinal number of {1, 2, 3, 4} is 4.
Consequently, the cardinal number of A is also 4 (|4| = 4).

It must be noted that the symbol of a cardinal number, although it looks like the symbol of a
natural number, is not a natural number — it has its own rules which happen to coincide with
those of natural numbers for finite sets. It is only for convenience that the symbols are identical.
Consequently, the cardinal number of a finite set indicates the number of elements in that set.
Cardinal numbers provide a way to define the number of elements in a set mathematically.

The number of elements in an infinite set is undefined in terms of ordinary numbers. However,
cardinal numbers can be used to indicate that an infinite set has a number of elements that is
greater than any finite number. The cardinal number for the set of natural numbers is different

than the cardinal number for every finite set, and is given the symbol X, (called “aleph-zero”).
Consequently, any set that is equivalent to the set of natural numbers has the same cardinal
number Ro. Cardinal numbers for infinite sets are called transfinite cardinal numbers.

Are all infinite sets equivalent to one another? Georg Cantor [1845-1918], for reasons known
only to himself, deluded himself into believing that not all infinite sets are equivalent using a
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sloppy children’s diagonal argument, and hoodwinked virtually all mathematicians and logicians,
and others, into worshipping that same belief. It turns out that it can be rigorously proven (in this
document), using mathematical logic, that all infinite sets are indeed equivalent to one another.

1.4 Critique of the Diagonal Argument

The issue is whether the unit interval is equivalent to the set of natural numbers — whether

N ~ [0, 1]. The resolution of this issue determines whether there is more than one transfinite
cardinal number. 1f it can be proven that N ~ [0, 1], then it can easily be deduced that N ~ R,
and so [N| # |R|. It would then follow that there is a second cardinal number R, (= |R|). Using a

different theorem, called Cantor’s power set theorem (which is also invalid for the same general
reason that the diagonal argument is invalid), an infinite sequence of transfinite cardinal

numbers, R, Ry, N2, ---, would be deduced to exist. It turns out that the diagonal argument and
Cantor’s theorem are related such that either both are TRUE or both are FALSE.

Using the definition of equivalent sets (as already shown at statement 2),

A~B =df
A (fe {g: 24— B} A VyeB (Ax€4 (fix) =y)) A
Vixi, x2€4 ((x1 # x2) — (f(x1) # f(x2)))), (3)

the equivalence of N and [0, 1] is deduced as follows:

N ~10,1] «
df(fe {g: N -0, 1]} A Vx€[O0, 1] (IneN (f(n) =x)) A
Vl’ll, I’leN ((l’ll *+ l’lz) — (]((I’l]) if(nz)))) (4)

Cantor’s diagonal argument tries to prove that N + [0, 1] by attempting to use the method of
proof by contradiction. In this section, <N ~ [0, 1]> will be called the “thesis”, and its negation

(N ~ [0, 1]) will be called the “antithesis” in relation to the said proof by contradiction. So

statement 4 is the antithesis. Proof by contradiction considers the antithesis, and if there is a
contradiction between the antithesis and the ZFC axioms (ZFC axioms of set theory), then those

axioms logically imply the thesis (N ~+ [0, 1]), but not the antithesis.

The antithesis, given symbolically as it is without specifying the details of N or [0, 1], is not
contradictory to the ZFC axioms, otherwise statement 4 would be invalid. Therefore, the details
of the members of N and [0, 1], along with statement 4, need to be taken into account to proceed
with the argument.

The antithesis (statement 4) implies that there is at least one function, f, for which the range of f,
the co-domain of f, and the unit interval are all equal (ran f= cod f= [0, 1]). See 1.2_Equivalent
Sets.

The diagonal argument tries to logically “list” the range of f'(ran /) of the antithesis, and, using
the diagonal method on that /is¢, hopes to conclude, by contradiction, that the range of f'is

different than the co-domain of f'(ran ' # cod /) for every f. This would imply that N ~ [0, 1].
See 1.2_Equivalent Sets.

The list (ran f) is expressed as the set {xi, x2, x3, ...} (ran /= {x;, x>, x5, ...}), where VieN (x; =
f(i)). Each x; is unique (VijeN ((i + j) — (x; #+ x;))) satisfying the Vn,, n,€N ((n, # n) —
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(f(n1) # f(n2))) part of statement 4. Also, the /ist is equal to the unit interval ({x,, x>, x5, ...} =
[0, 1]), satisfying the Vx€[0, 1] (InEN (f(n) = x)) part of statement 4.

Referring to statement 4, the claim in the diagonal method is that there exists a number, r (the so-
called diagonal number), belonging to the co-domain of f'(cod f) but is different from each
member of the range of /' (ran f). In mathematical logic, this is generally expressed as

dre(cod f) (VxE(ran f) (r # x)). (5)

However, with the implication of the antithesis, substituting «<ran /= cod /= {xi, x2, ...} = [0, 1D
directly into statement 5 results in

3rel0, 1] (VieN A x,€[0, 1] (7 # x))). (6)

But, STATEMENT 6 IS SELF-CONTRADICTORY as proven by Theorem 1. So, even before the
details of the diagonal method begin, the very principle upon which that method rests is flawed
— the diagonal method is merely a particular case of statement 6.

Note that the use of the set {xi, x2, x3, ...} is redundant, but introduced to relate the discussion to
the way that the diagonal argument is generally presented. Substituting <ran /= cod /= [0, 1]

into statement 5 results in dr€[0, 1] (Vx€[0, 1] ( # x)), which is self-contradictory as before.

The above ought to be enough to convince rational mathematicians to dismiss the diagonal
argument out of existence. But for the sake of the die-hard mathematician (who is typically
convinced more by popularity and emotion than by logic) we will press on.

Some mathematicians may have an issue with substituting «<ran f'= cod /= [0, 1]> into statement
5. The antithesis (N ~ [0, 1]) certainly implies <ran f= cod /= [0, 1]>, and r is certainly a
member of [0, 1] (» € [0, 1]) as defined by the diagonal method. The “list” in the diagonal

argument is certainly equal to ran f, because that is the part that varies with different functions f
of statement 4.

So, we have
(N ~ [0, 1]) = (ran f= [0, 1]). (7)

But, the consequent of logical implication 7 is a particular case of the antecedent of Theorem 2,
therefore,

(ran /=10, 1]) = —3dr€|0, 1] (VxE(ran f) (r # x)). (8)
Putting logical implications 7 and 8 together, we get
(N ~ [0, 1]) = (ran f= [0, 1]) = —3re€|0, 1] (VxE(ran f) (r # x)). 9)

So, the antithesis implies that there does not exist a number r (the diagonal number) that is
different from each member of the /ist (ran f). In plain English, this means that no such diagonal
number can be “constructed”, “defined”, etc. Therefore, in plain English, the diagonal method
DOES NOT guarantee that the diagonal number exists. In fact, the diagonal method DOES
guarantee that there is NO such diagonal number at all under the condition (ran f= [0, 1]) of the
antithesis, consequently invalidating the diagonal argument altogether.

But the die-hard mathematician is still not convinced, insisting that

3re[0, 1] (VxE(ran f) (r # x)) (10)
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is unconditionally TRUE (because Cantor said so), thereby indicating a contradiction with the
consequent of logical implication 9, claiming that the contradiction required by the proof by
contradiction has been fulfilled.

The VITAL question for the die-hard mathematician is: what justifies the claim that statement 10
is unconditionally TRUE (ie: that the diagonal method guarantees that the diagonal number »
exists)? Statement 10 is certainly not a tautology — Theorem 1 sees to that. It is not deduced
from the ZFC axioms since the truth of the statement is conditional upon «<ran f C [0, 1]

(Theorem 3). The answer can only be that it is an arbitrarily introduced statement dogmatically
asserted to be unconditionally TRUE (for example, by the word “construct”). But, it is forbidden
to arbitrarily introduce statements in a logical deduction, otherwise anything can be proven.

However, there is a condition under which statement 10 is TRUE. After substituting <ran /> for
S, and [0, 1] for S>, Theorem 3 implies that

(ran £ C [0, 1]) = Jre€]0, 1] (VxE(ran ) (r # x)). (11)

Statement 11 says that, if <ran f5 is a proper subset of [0, 1] (= cod f), then, indeed, there is a
number, » (the diagonal number), that is different from each element of «ran /> (the /ist).
However, this is a natural consequence of proper subsets, and statement 11 is not relevant to the
antithesis and the diagonal argument. The statement certainly does not prove that it is impossible
that aran f= [0, 1]>, which is what is required to be proven to claim that no such function f exists
satisfying statement 4.

So, in summary to the die-hard mathematician, statement 10 is TRUE only under the precondition
that «ran /> is a proper subset of [0, 1] (ran f C [0, 1]), which is an irrelevant condition to the
argument — the statement does not prove that «<ran /> must be a proper subset of [0, 1]. So, the
diagonal argument tacitly presupposes (not deduces) logically that the /ist is a proper subset of
[0, 1], despite the verbal utterance that the /ist is (hypothetically) equal to [0, 1]. The mistake
that the die-hard mathematicians have made is to have assumed that statement 10 is necessarily or

axiomatically TRUE, rather than TRUE only when «ran f C [0, 1].

The relation between 7, <ran />, and <«cod /> can be summarised using Venn diagrams.

cod £ (=[0,1])

cod f (=[0,1])

ran f
(list)

ran f =codf = [0, 1] ran f C [0, 1]
r (the diagonal number) does not exist, r (the diagonal number) exists only in the
therefore cannot be used in the diagonal shaded area. This case is irrelevant to the
argument. diagonal argument.

The antithesis and the proof by contradiction of the diagonal argument logically involve only the
case on the left, making the argument invalid; the case on the right is irrelevant to the argument.
But, by dogmatically asserting that statement 10 is TRUE, mathematicians have logically, but
unknowingly, considered only the case on the right. However, they ignorantly and naively
thought that they were considering the case on the left, mistakenly thinking that a contradiction
arose to reject that case — mathematicians have conflated the two cases. The case on the left
has not been disproven; it is still possible.
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But the fanatical die-hard “mathematician” will still insist that it is the details of the actual
diagonal method that proves it unconditionally TRUE (as though an instance of a theorem can,
somehow, refute the theorem). For such die-hards, the actual diagonal method will be analysed in
the next section.

1.4.1 Details for Stubborn Mathematicians

It has already been shown above that the principle of the diagonal argument is flawed. That
principle is that it is possible for there to be an entity belonging to a set of all such entities but
different from each member of that set. In the case of the diagonal argument, that translates to: it
is possible for there to be a number, r, in the unit interval ([0, 1]) belonging to a list (the range of
a function /') of all such numbers but different from each member of that list. Keep in mind that
the diagonal argument assumes, hypothetically, that the range of fis identical to the unit interval.

We now consider the details of the diagonal method in terms of mathematical logic. The diagonal
number 7 can be represented by a sequence of digits as

r=<a, a, as, ...>, (12)

and the function f which maps the natural numbers to the unit interval, not necessarily as a
one-to-one correspondence, can be defined by digit sequences as

VieN (fi) = xi=<biw, b, bn, ...>), (13)

where Vi, jeN (a;, biy € {0, ..., 9}). The sequences represent the decimal digits of numbers in
the unit interval. We also have the following equations based on statements 12 and 13 above,

L =ran f'= {f(0), f(1), ...} = {x0, X1, ...} = {<boo, bo1, ...>, <byo, b1y, ...>, ... }. (14)
L represents the “list” that is typically mentioned in the traditional diagonal argument.

We also have the following Lemma deduced from the equations 12 and 14.

Lemma L1: VieN A ag,€r A bi€xi(ai # b)) = VieN A x,eL (r # x).

We now prove that the diagonal method is FALSE if the antithesis is assumed. First, we have that

3r€]0, 1] (ViEN A a,€r A biEx: (ar # bi)) = [DIAGONAL METHOD]
Ar€[0, 1] (VieN A x;€L (r # x;)). [by Lemma L1] (15)

But (if the antithesis is now assumed, ie, <L = [0, 1]),

(L=10,1]) = —~3re|0, 1| (VieN A x;€L (r # x;)). |[by Theorem 2] (16)

The contrapositive of logical implication 15 is

—dre|0, 11 (VieN A x; € L (r+x))=> —3re|0, 1] (VieN A a.cr A bi€xi(a; # biy)). (17)
Therefore, combining logical implications 16 and 17, we get

(L=10,1]) = ~dre|0, 1| (VieN A acr A bi€x; (a; # biy))

and the diagonal method is FALSE if the antithesis is assumed. Note carefully that an external
general theorem (Theorem 2) was used in the proof above to prove that the diagonal method is
FALSE. Therefore, it is logically invalid to claim that the diagonal method guarantees that r is
different from each number in the list L, because » does not exist. All that the diagonal method
guarantees is that it is FALSE if the antithesis (L = [0, 1]) is assumed.
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But mathematical logic is beyond the comprehension of the die-hard mathematician, so the actual
presentation of Cantor’s diagonal method will be analysed to reveal its flaw.

The following is a demonstration of exactly where the contradiction in the diagonal method
arises. The contradiction occurs entirely within the method itself, not as a contradiction with the
ZFC axioms.

Below is an illustrative example of the ‘list’ so popular with that children’s diagonal argument.

x0—0.3 .......
X1:O..7 ......
)Cz—o.. 5.....

x,=0.486..f. .. (the diagonal number, r)

First of all, in the traditional presentation of the diagonal argument, the variable r, representing
the diagonal number, is presented outside the /ist. To be consistent with the antithesis, the
variable » MUST be presented IN the actual /ist (as shown in the example above at x,), not
somewhere outside the /isz. Having the variable not in the actual /ist implies a different list than
the one assumed by the antithesis. In other words, using a separate variable for the diagonal
number implies that the number may be equal to some number in the /is¢, or that it may be
different from all the numbers in the /ist. However, by the antithesis, the number is in the unit
interval (which is equal to the /ist), so the diagonal number » should not be presented as a
separate variable but presented as one of the numbers in the /ist (ie: x,). Conversely, if the
diagonal number r is different from all of the numbers in the /is¢, then the /ist is not the antithesis
list, but a proper subset of the antithesis /ist, even before the diagonal method begins. Therefore,
in that case, the diagonal method itself is redundant because it is already presupposed that there is
a number, 7, not in a proper subset of the antithesis /ist, and so no contradiction occurs.

Let us proceed. Take r (= x,) to be in the /ist since the /ist contains all the real numbers
(including the diagonal number) in the interval [0, 1] as per the antithesis. The diagonal number
is defined by having its k™ digit one greater than the ™ digit of x;, except when the k™ digit is 9.
In that case, the k™ digit of xs, will be 0. With the example list above, the 4 is one greater than
the 3; the 8 is one great than the 7; the 6 is one greater than the 5; and so on. What digit should
replace the question mark ()? By the very definition of the diagonal method itself, that digit
would have to be one greater than itself, which is logically impossible.

The diagonal method is attempting to use the diagonal number itself as part of its own definition
in a self-contradictory way; therefore the diagonal method is self-contradictory. No such entity
defined in the said manner can exist. If someone wants to claim that the said contradiction
implies that the diagonal number » does exist but cannot be in the /ist, then they must accept the
logical presupposition in the diagonal method that “the list” is a proper subset ([0, 1]\{r}) of the
antithesis /istz, and not the /ist that is actually assumed by the antithesis ([0, 1]) — the antithesis
list is still possible (with dire consequences for the diagonal argument).

What mathematicians seemed to have done is that they initially assumed that » may or may not be
in the /ist (via the antithesis), and then imagined, by naively conflating both cases together, that
they had deduced, by the diagonal method, that the diagonal number could not possibly be in the
list. Here, they failed to separate the two cases of the number » being in the /ist and not in the /ist
— the first case is self-contradictory; the second case tacitly presupposes that the presented /ist
is a proper subset of the antithesis /ist even before the introduction of the diagonal method.
Presenting a proper subset of the antithesis /ist is irrelevant to the diagonal argument; the
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existence of a proper subset of the antithesis /ist does not logically invalidate the existence of the
antithesis /ist itself. In both cases, the diagonal argument fails.

Some mathematicians may want to claim that the antithesis is actually that the function fis a
bijection (a one-to-one and onto function). They then show that the diagonal method is TRUE
only for a proper subset of the antithesis function’s co-domain, therefore the antithesis function
cannot be a bijection, claiming that the bijectivity of the antithesis is what has been contradicted.
Here, they make the following mistake. By claiming that the diagonal method implies a proper
subset of the antithesis function’s co-domain, they have also tacitly presupposed a different
function, 4 (a one-to-one and into function), rather than the function f of the antithesis. So, no
contradiction has been obtained with the original antithesis function f. In other words, the
diagonal method can only be TRUE with a different function, 4, rather than with f (the diagonal
method is impossible with f). So all they prove is that the diagonal method, if TRUE, entails that
there exists a function, 4, that is one-to-one and into. They completely fail to prove that there
cannot exist a function f'(one-to-one and onto). Here, they conflate the functions 4 and f. The
existence of the function 4 does not logically invalidate the existence of the function f. This is
the sort of confusion that happens when amateurs use pictorial children’s methods with subjective
terms as proofs in place of proper logical proofs with proper logical terms.

1.5 Critique of Cantor’s Power Set Theorem

Cantor’s power set theorem (usually just called “Cantor’s Theorem™) claims that the cardinality
of any set is strictly less than the cardinality of its power set (VA (|4| < |$(A4)|)). For finite sets,
this is certainly TRUE, but will not be proven in this document. The issue arises with infinite sets;
does the strict inequality hold for them? If A ~ §(A4) is proven for infinite sets, then the
cardinality of an infinite set is equal to the cardinality of its power set (|A| = |§(A4)|), and for all

sets, we would have VA4 (|4| < |0(4)]).
The argument used in Cantor’s power set theorem will be called the “power set argument” in this

document. Just as the diagonal argument is invalid, so too the power set argument is invalid for
the same general reason.

The aim of this section is to show that the argument that claims the non-equivalence of an infinite
set, A, and its power set, §(A), is invalid. The equivalence of A and §(A) is defined as follows:

A~ p(4) «
A (fe {g: 24— A} AN VPEP(A) (AxEA (f(x) = P)) A
Vxi, x2€A4 ((x1 # x2) — (f(x1) # f(x2)))). (18)

The power set argument tries to prove that 4 + §(A4) by attempting to use the method of proof by

contradiction. In this section, 4 + §(A4) will be called the “thesis”, and its negation (4 ~ §£(4))

will be called the “antithesis” in relation to the said proof by contradiction. Proof by
contradiction considers the antithesis, and if there is a contradiction between the antithesis and

the ZFC axioms (ZFC axioms of set theory), then those axioms logically imply the thesis (4 +
§(A4)), but not the antithesis.

The antithesis (statement 18) implies that there is at least one function, f, for which the range of f,
the co-domain of £, and the power set of A are all equal (ran /= cod /= £(4)). See
1.2_Equivalent Sets.

Referring to statement 18, the claim in the power set argument is that, for every f, there exists a
set, S, belonging to the co-domain of f'(cod f) but is different from each member of the range of f
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(ran f). This means that the range of fis different than the co-domain of f (ran f # cod /') for
every f, implying that A ~ §(A4), and, with a bit more logic, that VA (|4]| <|§(4)]).

Just as for the diagonal method, the problem is that the power set argument attempts to achieve
the logically impossible in a devious way.

The claim effectively states that the following statement is TRUE.

AS€(cod f) (VPE(ran f) (S # P)). (19)

However, with the implication of the antithesis, substituting <ran /= cod /= §£(4)> directly into
statement 19 results in

ASE€P(A) (VPEP(A) (S + P)). (20)

This means that there is a set, S, that is a subset of the set A, that is different from each subset in
the range of f which contains all the subsets of 4.

But, STATEMENT 20 IS SELF-CONTRADICTORY as proven by Theorem 1. So, even before
the details of the power set argument begin, the very principle upon which that argument rests is
flawed — the power set argument is merely a particular case of statement 20.

From the antithesis, we have

(4 ~ 9(4)) = (ran f= H(4)). (21

But, the consequent of logical implication 21 is a particular case of the antecedent of Theorem 2,
therefore,

(ran = p(A)) = —~3S€p(4) (VPE(ran f) (S # P)). (22)
Putting logical implications 21 and 22 together, we get
(A4 ~ p(4)) = (ran f= 0(A4)) = ~AS€P(A) (VPE(ran f) (S # P)). (23)

So, the antithesis implies that there does not exist a subset S of A4 that is different from each
member of the range of /' (ran f). In plain English, this means that no such subset can be
“constructed”, “defined”, etc. Therefore, in plain English, the power set argument DOES NOT
guarantee that the subset S exists. In fact, the power set argument DOES guarantee that there is
NO such subset at all under the condition (ran /= §(A4)) of the antithesis, consequently
invalidating the power set argument altogether. (The reader may notice some déja vu happening
here with the diagonal argument.)

But the die-hard mathematician is still not convinced, insisting that
ASep(4) (VPE(ran f) (S # P)) (24)

is unconditionally TRUE (because Cantor said so), thereby indicating a contradiction with the
consequent of logical implication 23, claiming that the contradiction required by the proof by
contradiction has been fulfilled.

The VITAL question for the die-hard mathematician is: what justifies the claim that statement 24
is unconditionally TRUE? Statement 24 is certainly not a tautology — Theorem 1 sees to that. It

is not deduced from the ZFC axioms since the truth of the statement is conditional upon «ran f C
§(4)> (Theorem 3). The answer can only be that it is an arbitrarily introduced statement

dogmatically asserted to be unconditionally TRUE. But, it is forbidden to arbitrarily introduce
statements in a logical deduction, otherwise anything can be proven. (More déja vu.)
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However, there is a condition under which statement 24 is TRUE. After substituting <ran /> for
S, and §(A) for S», Theorem 3 implies that

(ran £ C 0(4)) = AS€p(A4) (VPE(ran f) (S # P)). (25)

Statement 25 says that, if «ran /) is a proper subset of §(A4) (= cod f), then, indeed, there is a
subset, S, that is different from each element of «ran f>. However, this is a natural consequence
of proper subsets, and statement 25 is not relevant to the antithesis and the power set argument.
The statement certainly does not prove that it is impossible that «ran f'= §(4)>, which is what is
required to be proven to claim that no such function f exists satisfying statement 18.

So, in summary to the die-hard mathematician, statement 24 is TRUE only under the precondition
that «ran /) is a proper subset of §(A) (ran f C §£(A4)), which is an irrelevant condition to the

argument — the statement does not prove that «<ran /> must be a proper subset of (A4). So, the
power set argument tacitly presupposes (not deduces) logically that the range of f'is a proper
subset of §(A), despite the verbal utterance that the range of f'is (hypothetically) equal to §(A4).
The mistake that the die-hard mathematicians have made is to have assumed that statement 24 is
necessarily or axiomatically TRUE, rather than TRUE only when «ran f C §(4)>.

1.5.1 Details for Stubborn Mathematicians

What is this subset, S, magically created by mathematicians, that feigns the conclusion that the
power set of an infinite set has greater cardinality than the set?

The magical set, S, is defined this way.
S={x€4:x¢&fix)} (26)

This set is arrogantly ASSUMED to exist unconditionally by mathematicians. Merely defining a
set does not automatically guarantee that it exists (mathematically) because a definition can be
self-contradictory or conditional. The correct way to define the set in mathematical logic is

AS(Vx(xeSoxedAx&flx) 27)

Statement 27 must be proven to be TRUE, not just assumed to be so. The statement involves the
function f, and is therefore conditional (because the existence of fis conditional). If the statement
is conditional, then it could be FALSE. And, if it could be FALSE, then it is not derived from the
ZFC axioms unconditionally.

Now, the power set argument does deduce a contradiction from statement 27 with the antithesis.
But that contradiction is the result of the definition of S, together with the antithesis, being self-
contradictory, rather than from a conjunction of a deduction from the statement (and the
antithesis) with another statement derived from the ZFC axioms independently of the antithesis.
In other words, the contradiction required by the proof by contradiction is a contradiction
between (1) the antithesis and (2) the ZFC axioms entirely independent of the antithesis. Neither
of those two lines of logic are permitted to result in a contradiction themselves — the required
contradiction needs to be from the conjunction of the conclusions of those two lines. There is no
such contradiction between those two lines of logic in the power set argument. The power set
argument has only one line of logic that depends on the antithesis, and the resulting contradiction
makes that line itself self-contradictory.

The following shows that statement 27 leads to a contradiction using proper mathematical logic.
Firstly, we will assume that S is not the null set (S # @) to avoid complications. It is unlikely

that mathematicians intended that the set be null, so the non-null set assumption is a fair one. In
any case, it does not alter the outcome.
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Vx(x €S x€AANx¢& f(x) = [from definition of § (statement 27)]
Vx(x€S—x € A) & [deduction]
S € 4 < [by definition of subset]

S € p(A) [by definition of power set] O

VPeH(A) (Ix€A4 (f(x) = P)) & |[by definition of the “onto” part of /]

VPE{S} (Axo€A (f(xo) = P)) AN VPEP(A)\S (Ix€4 (f(x) = P)) = [separation of S from §(4)]
VPE{S} (Ixo€4 (f(x0) = P)) & [deduction]

dxo€4 (f(xo) = S) & [simplification (P = 9)]

dxo (xo € 4 A (f(xo) =8)) = [equivalence to the previous statement]

X0 € A [interpretation then deduction]

flxo) =S [interpretation then deduction] O

Vx(x €S x€AAx¢&fix) © [fromdefinition of § (statement 27)]

Vxe{x:x=x} (x€Sox€AdANx¢&fix)A
VxE{x:x#x x €ESeox €A Ax¢&flx)) > [separation of x, from x|

VxE{x:x=x} (x €S> x€A4ANx¢&flx) < [deduction]

Xo € S x0€ A A xo & f(xo) & [simplification (x = x¢)]

Xo€E S x0€AANxo& S < [substitution from f{xy) = S of a previous step]
Xo & S A xo& A= [simplification of bi-conditional («)]

xo & A. [deduction]

X0 & ANxo€ A< L [xo€ A fromaprevious step| W

Therefore: AS(Vx (x € S x € A4 A x & f(x))) = IAS(L) = L. [from the deduction above]

Therefore: AS(Vx (x E S x €4 A x & f(x))) & L. [statement 27 is self-contradictory]

Notice that the argument presented above, showing that S is self-contradictory, is the same as the
traditional power set argument, but is a direct proof. If the traditional power set argument is
considered valid by mathematicians, then so too the (almost) identical argument above ought to
be considered valid. The difference is that, in the traditional power set argument, S is arbitrarily
assumed to exist unconditionally without proof (of which there is none) — it is that assumption
that makes the traditional power set argument invalid.

So, the contradiction resulting from the power set argument is a consequence of the definition of
S being self-contradictory, not a consequence of <4 ~ §(A4)> being contradictory with the ZFC
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axioms. A way to avoid the contradiction is to define Sas «S= {x € 4 : x & f(x)\S}>, rather than
as the deliberately contrived self-contradictory set S used in the power set argument. Defining S
in the said manner allows <, € 4> without contradiction (allowing f'to be ‘onto’), but is useless
to the power set argument.

It is important to note that the self-contradiction of statement 27 arises only in conjunction with
the implied ‘onto’ function f of the antithesis; no contradiction results for functions, f, that are
‘into’ (ie: where ran f C §£(A4)). However, the antithesis together with the proof by contradiction
of the traditional power set argument logically considers only ‘onto’ functions, making that
argument invalid (as shown above); ‘into’ functions are irrelevant to the argument. But, by
dogmatically asserting that statement 27 is unconditionally TRUE, mathematicians have logically,
but unknowingly, considered only ‘into’ functions. However, they ignorantly and naively thought
that they were considering ‘onto’ functions, mistakenly thinking that a contradiction arose to
reject that case — the case where the function fis ‘onto’ has not been disproven; it is still
possible. Mathematicians have conflated the two cases.

In summary, if the antithesis is TRUE then statement 27 (and 26) is self-contradictory (as proven
above), and the power set argument is invalid. But mathematicians have dogmatically asserted
that the statement is unconditionally TRUE (without justification), and falsely claimed that the
resulting contradiction proves that the antithesis is FALSE (ie: that it is impossible that there exists
an ‘onto’ function f). Statement 27 cannot be derived from the ZFC axioms because its truth is
conditional on the antithesis — the ZFC axioms are not conditional. So, under the hypothetical

assumption that 4 ~ §(A4), the traditional power set argument fails.

But the die-hard mathematician is so stubborn (and hard to teach) that further convincing is
required. From statement 27 we have

AS(Vx(x ES o x €A A x & fix)) = ASEP(A) (VPE(ran f) (S + P)). (28)

The consequent of logical implication 28 states that the set S is a subset of A, and that it is
different than any of the subsets of A that are in the range of . Note that no assumption that

ran f'= §(A)> has been made in statement 28. (Note that cod /= §(A) by definition.) We now
assume the antithesis to obtain

(ran = p(A)) = —~3S€p(4) (VPE(ranf) (S # P)). [by Theorem 2] (29)
The contrapositive of logical implication 28 is

—3Sep(4) (VPE(ran f) (S + P)) > ~IAS(Vx(x € S x € 4 A x &€ f(x)). (30)
Therefore, combining logical implications 29 and 30, we get

(ran f=p(A)) = ~AS(Vx(x €S x €4 A x & f(x))

and the existence of the magical set, S, assumed in the traditional power set argument to
unconditionally exist, is FALSE if the antithesis is assumed (ran /= §(A4)). Note carefully that an

external general theorem (Theorem 2) was used in the proof above to prove that the existence of S
is FALSE. Therefore, it is logically invalid to claim in the power set argument that the set S exists.
No fancy words like “construct the subset S” or “consider the subset S or “define the subset S is
going to make a non-existent set existent (mathematically speaking) unless the set in question is
magical and some sort of mathematical wizard brings it into existence (maybe the Wizard of Oz
can do it; or maybe Cantor was actually the Wizard of Oz pretending to be a mathematician!).
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Proof that the Reals are Denumerable

2.1 Preliminaries

It 1s not possible to determining whether two infinite sets are not equivalent if the elements of the
two sets are regarded as unrelated indivisible units. In principle, it appears that some intrinsic
relation between the elements of the two sets needs to be known to determine that they are not
equivalent. The default situation is that two infinite sets are equivalent (there is no reason to
consider otherwise). However, if it is proposed that any two particular infinite sets are not
equivalent, as is assumed with the natural numbers and the real numbers, then that proposal may
be contested by considering the intrinsic nature of the elements of the two sets.

Mathematicians currently (in 2025) assume that the rational numbers are not equivalent to the
irrational numbers. However, by examining the intrinsic nature of both sets of numbers, it can be
rigorously proven that the two sets are indeed equivalent. The rational numbers and the irrational
numbers can both be defined within a single system called Dedekind cuts. It turns out that the
definition of Dedekind cuts guarantees that the cardinality of the irrational numbers is identical to
the cardinality of the rational numbers. Consequently, the real numbers are not denumerable,
contrary to current mathematical “wisdom”.

The definition of a Dedekind cut for an irrational number is an ordered pair (L, R) of subsets of
the rational numbers, Q, into two non-null sets, L and R, satisfying the following conditions:

1. LUR=Q (L and R together contain all the rational numbers)

2. LN R=O (LandR are disjoint; they have no common elements)

3. Va€L (VbER (a <b)) (every clement of L is less than all the elements of R)
4.  Vx€L (yeL (x <y)) (L contains no greatest element)

5. Vx€R (AyeR (y <x)) (R contains no smallest element)

If condition 5 is omitted, then the remaining four conditions define a real number. Dedekind
cuts, (L, R), representing only irrational numbers will be considered in this document. The
elements of partition L are all on the left of the cut, and the elements of partition R are all on the
right of the cut on the number line of rational numbers.

In the diagram below, the rational numbers are represented by the area between the two horizontal
lines. The rational numbers increase to the right.

Dedekind cut
(represents an irrational number)

The vertical bar represents a Dedekind cut — an irrational number. The L and R represent sets
as defined in the definition of a Dedekind cut above. All the Dedekind cuts represent all the
irrational numbers and vice versa. The two sets contain only rational numbers.
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Side Note: The reader should be made aware at this point that doomsday is fast approaching for
transfinite cardinal numbers — repent now, for that time is nigh.

An important property of Dedekind cuts is that between any two irrational numbers, ¢ and c»,
there is a rational number.

Theorem 10: There exists a rational number between any two distinct Dedekind cuts (irrational
numbers).

Proof:
Let ¢; = (L1, R) and ¢, = (L2, R,). Assume that ¢, < c,.

We seek to prove that the set of rational numbers between ¢, and c; is not the null set, therefore it
contains at least one rational number. In other words, we seek to prove Ry N L, + .

c1<c, ¥ L, CL, [bydefinition from the theory of Dedekind cuts]

LiCL = (LN L+ @). [from set theory]

LiNnL,=R N L, [since L and R, are complementary from the definition of a Dedekind cut]
RiN L, +# @. [substitution]

dx (x € (R N Ly)). [obviousness| W

Another important property of Dedekind cuts is that between any two rational numbers, 7 and r,
there is an irrational number (a Dedekind cut).

Theorem 11: There exists an irrational number (Dedekind cut) between any two distinct rational
numbers.

Proof:

Assume that »; <r,. L is the set of rational numbers to the left of the Dedekind cut (the vertical
line), and R is the set to the right.

(r»— r1)/N2 + 71 is an irrational number because V2 is irrational and | and r, are rational. Note
that in place of the V2, any irrational number greater than 1 can be used.

Define the sets Land R: L = {x : x < (r»— r)/N2+ 1} and R = {x : x > (r» — r)/N2 + r}.
The Dedekind cut is the irrational number (r, — r1)/N2 + r, between r; and r,. B

Verification:
(n<(rm-r)2+r) e 0<m-rn2)e 0<(m-rn) < rn<rmn)O
(> —rmN2)+rn e (n-r>@FE-m2) e (1>17\2) < (2>1)0

The two theorems above prove that the rational and irrational numbers are interleaved, making it
impossible that the two sets of numbers have different cardinalities.
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2.2 The Irrationals Precede the Rationals

This section proves that the irrational numbers precede the rational numbers. This means that all
of the irrational numbers can correspond one-to-one to a subset of the rational numbers. The set

of rational numbers is denoted by Q, and the set of irrational numbers is denoted by Q.

For any given irrational number, ¢, there is at least one rational number, », greater than c and less
than all other irrational numbers, &, greater than c. ¢ can be associated uniquely with that rational
number ». This is written mathematically as

VeeQ (F3reQ (VEeQ (c <k — ¢ <r<k))). (50)
Statement 50 implies Q < @, therefore |Q| < |Q|, because each c can be associated with one (or
more)  uniquely among similar associations of all other irrational numbers £.

This is illustrated in the following diagram for each c¢. The area between the two horizontal lines
represents the rational number line increasing to the right. The vertical lines represent Dedekind
cuts between rational numbers. The dot represents the rational number(s) to the left of the cuts £.

o7

¢k k k kVkd<h
(@)

All the cuts, £, to the right of the reference cut, ¢, have the one (or more) same rational number, 7,
to their left. This means that the reference cut ¢ can be associated with a unique rational number
() on its right, among all similar associations of all the cuts (irrational numbers) in the rational
number line. This situation applies to each ¢ in the number line. Therefore, each ¢ in the number
line can be associated with its own rational number, unique among the rational numbers
associated with other cuts.

Justification of statement 50:

Let c € Q. The statement Vd€Q (Ir€Q (¢ <d — ¢ < r < d)) says that, if ¢ < d, then between ¢
and d, there is an r (for each d). This is proven by Theorem 10.

But, the same rational number r is also less than all irrational numbers, k, greater than or equal to
the irrational number d (see diagram). In other words, if 7 is less than d, it is also less than all £’s
greater than or equal to d. The said statement is modified, as follows, to express this new fact.

VdeQ (3reQ (VikeQ (c<d <k — ¢ <r<d<k)).

We are not interested in d, so we equate d with k£ and remove Vd€Q. Therefore,
AreQ (VkeQ (d=k) A (c<d<k—c<r<d<k))) =

3reQ (VEkEQ (c<k<k — c<r<k<k)) = [substitute k for d]

3reQ (VEkEQ (c <k — ¢ <r<k)). [simplify]

The above applies to all ¢ € Q. Therefore,

VeeQ (F3reQ (VkeQ (c <k — c<r<k))). m

Statement 50 is justified, and each ¢ can be associated with a unique 7 to its right.
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Can two or more cuts (irrational numbers), ¢, and ¢,, be associated with the same rational number
r? Consider that ¢; < ¢;, and ¢, < r. Assume that r is associated with c,.

*r

¢ )

Now, r cannot be associated with ¢; because it is to the right of ¢,; the rational number associated
with c¢; must be to the left of all cuts to its right, and r is not to the left of ¢,. In other words, for
r to be associated with ¢; it must be between ¢, and ¢; (¢1 <7 < ¢y).

Now assume that » is associated with c;.

€ (5]

We see that » cannot be associated with ¢, because the rational number associated with ¢, must be
to the right of c».

Therefore, each cut (irrational number) corresponds to a unique rational number among the
rational numbers associated with all other cuts (irrational numbers). A cut can possibly be
associated with more than one rational number, but no other cut can be associated with those
rational numbers. So, we have that each irrational number can correspond one-to-one with (at
least) one rational number. Therefore, the irrational numbers precede the rational numbers. In

other words, Q < Q, as promised.

2.3 The Rationals Precede the Irrationals

This section proves that the rational numbers precede the irrational numbers. This means that all
of the rational numbers can correspond one-to-one to a subset of the irrational numbers. The set

of rational numbers is denoted by Q, and the set of irrational numbers is denoted by Q.

For any given rational number, ¢, there is at least one irrational number, c, greater than ¢ and less
than all other rational numbers, r, greater than g. ¢ can be associated uniquely with that irrational
number c. This is written mathematically as

VgeQ (3ceQ (VreQ (g<r— g<c<r)) (51)

Statement 51 implies Q < Q, therefore, |Q| < |Q|, because each r can be associated with one (or
more) ¢ uniquely among similar associations of all other rational numbers 7.

This is illustrated in the following diagram for each ¢g. The area between the two horizontal lines
represents rational numbers increasing to the right. The dots represent rational numbers. The
vertical line represents the Dedekind cut(s) to the left of the rational numbers 7.

q rr r rvrd<r)
(d)

All the rational numbers, 7, to the right of the reference rational number, g, have one (or more)
same cut (irrational number), ¢, to their left. This means that the reference rational number g can
be associated with a unique cut (c¢) on its right, among similar associations of all the rational
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numbers in the rational number line. This situation applies to each ¢ in the number line.
Therefore, each ¢ in the number line can be associated with its own cut (irrational number),
unique among the cuts associated with other rational numbers.

Justification of statement 51:

Let ¢ € Q. The statement Vd€Q (Ic€Q (¢ <d — ¢ < c < d)) says that, if ¢ < d, then between
g and d, there is a ¢ (for each d). This is proven by Theorem 11.

But, the same irrational number c is also less than all rational numbers, 7, greater than or equal to
the rational number d (see diagram). In other words, if ¢ is less than d, it is also less than all »’s
greater than or equal to d. The said statement is modified, as follows, to express this new fact.

VdeQ (3ceQ (VreQ (g<d<r—g<c<d<r))).

We are not interested in d, so we equate d with » and remove Vd€Q. Therefore,
3ceQ (VreQ(d=r A(g<d<r—g<c<d<r)) =

dceQ (VreQ (g<r<r—qg<c<r<r)) = [substitute » for d]

JceQ (VreQ (g <r — g <c<vr)). [simplify]

The above applies to all ¢ € Q. Therefore,

VgeQ (A3ceQ (VreQ (g<r—qg<c<r)). &

Statement 51 is justified, and each ¢ can be associated with a unique ¢ on its right.

Can two or more rational numbers, r; and r,, be associated with the same irrational number ¢?
Consider that r, < r,, and 7, < c. Assume that ¢ is associated with r;.

r r

Now, ¢ cannot be associated with r; because it is to the right of r,; the irrational number
associated with 7, must be to the left of all rational numbers to its right, and c is not to the left of
r>. In other words, for ¢ to be associated with 7, it must be between », and r, (r1 < ¢ < r).

Now assume that ¢ is associated with r;.

We see that ¢ cannot be associated with », because the irrational number associated with r, must
be to the right of r..

Therefore, each rational number corresponds to a unique irrational number (cut) among the
irrational numbers associated with all other rational numbers. A rational number can possibly be
associated with more than one irrational number, but no other rational number can be associated
with those irrational numbers. So, we have that each rational number can correspond one-to-one
with (at least) one irrational number. Therefore, the rational numbers precede the irrational

numbers. In other words, Q X Q, as promised.
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2.4 Other Arguments

There are other intuitive arguments to show that the cardinalities of the rational numbers and
irrational numbers are the same. These are not rigorous arguments, but nonetheless point in the

direction that makes the justification of transfinite cardinal numbers beyond R, doubtful.

Note that the preceding sections will later lead to the absolute certainty that the existence of
transfinite cardinal numbers beyond R is factitious.

2.4.1 Cardinalities of Rational and Irrational Numbers
This argument uses the definition of an irrational Dedekind cut (see 2.1_Preliminaries).

That the cardinality of the set of irrational Dedekind cuts (irrational numbers) cannot exceed the
cardinality of the set of rational numbers is proven as follows.

Each irrational Dedekind cut is associated with a unique set to its left (“L-set”). For any given
L-set (S1), consider all the L-sets to its left (Si, S2, S5, ...) on the rational number line. The given

L-set minus all the L-sets to its left (S.\(S1 U S> U S5 U ...)) cannot be the null set (by definition

of a Dedekind cut). That set difference (Sp) contains some rational numbers (Sp # &).

Now consider each possible L-set (S1) on the rational number line. Each S. corresponds to an
irrational number and is also associated with a unique Sp because all the Sp’s are disjoint (because
of the definition of set difference). Therefore, the sets of L-sets, irrational numbers, and Sp’s are
equivalent.

Define a choice set (Sc) containing a single arbitrary member from each Sp (allowable by the
Axiom of Choice). The cardinality of Sc cannot be greater than the cardinality of the rational
numbers, because that choice set contains only rational numbers. But, the set of irrational
numbers is equivalent to the set of irrational Dedekind cuts, which is equivalent to the set of all
the Sp’s, which is equivalent to the set Sc, which cannot be greater than the cardinality of the set

of rational numbers, which is 8o. Therefore, the cardinality of the set of irrational numbers
cannot be greater than Xy — simples. In other words, the definition of irrational Dedekind cuts

guarantees that the cardinality of the cuts (irrational numbers) cannot be greater than the
cardinality of the rational numbers. That is to say, |Q| < |Q)|.

However, mathematicians claim that, at least, |Q] < \@\ So, in conclusion,

(1QI<1Q) A (QI 1@ = (1Q] = Q).

2.4.2 Maximum Partition Size of the Set of Rational Numbers

The maximum cardinality of all possible partitions of a finite set cannot exceed the cardinality of
the set. Each member of a partition is called a ‘block’. We can therefore say that the maximum
number of blocks in a finite set cannot exceed the cardinality of the set. For example, the
maximum number of blocks in {5, 6, 7} cannot exceed 3; those blocks are {5}, {6}, and {7}; it is
not possible to have a greater number of blocks. Likewise, for infinite sets, the maximum number
of blocks cannot exceed the cardinality of the set because the maximum number of blocks are the
singletons of the set elements.

The cardinality of the set of rational numbers is R, (|Q| = Ry). Therefore, the maximum number

of blocks of the set of rational numbers cannot exceed Xy. However, based on the definition of

irrational Dedekind cuts, each cut (irrational number) is between the blocks of the set of rational
numbers, and for each block there can be only one unique cut associated with it (say, to its right).
Therefore, the maximum number of cuts cannot exceed the maximum number of blocks which
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cannot exceed No. In other words, the cardinality of the irrational numbers cannot exceed the

cardinality of the rational numbers. That is to say, |Q| < |Q].

Alternatively, if the cardinality of the set of irrational Dedekind cuts (irrational numbers) is
greater than |Q| (as dogmatically asserted by mathematicians), then so is the cardinality of the set
of blocks defined by those cuts greater, since each block is associated with exactly one cut. That
contradicts the fact that the maximum number of blocks of the set of rational numbers cannot
exceed |Q|. Therefore, the cardinality of the set irrational numbers is not greater than |Q|. That

is to say, |Q| < |Q)|.

However, mathematicians claim that, at least, |Q| < |Q|. So, in conclusion,

(1QI<1Q) A QI <1Q)) = (1Q] = 1Q).

2.4.3 Interleaving of Rational and Irrational Numbers

It is apparent from Theorems 10 and 11 that the rational and irrational numbers are interleaved.
For any two distinct rational numbers, there is at least one irrational number in-between, and for
any two distinct irrational numbers, there is at least one rational number in-between.

So, we have the set of real numbers as {..., ro, —, io, —, r1, —, i1, —, 2, —, i, —, ...}, where
the ’s and i;’s are all different. Each 7 (a rational number) is associated with a unique i, (an
irrational number), regardless of how dense the 7’s and i;’s are. The interleaving ensures that the
cardinalities of the two sets are identical. Therefore, 8o = |Q| = |Q|. The only way that there

could be more i;’s than ;s is that if, for some pairs of irrational numbers, there is no rational
number in-between. Because of the interleaving, there is no reason why the irrational numbers
ought to “out number” the rational numbers (or vice versa).

In the limiting case of the interleaving, we have {..., ro, iy, 71, i1, 12, i2, ...} for each distinct
rational and irrational number. Again, each rational number is associated with a unique irrational

number, therefore, 8o = |Q| = |Q].

2.4.4 Axiom of Infinity Disallows Transfinite Cardinals

The Axiom of Infinity in ZFC set theory effectively defines the set of natural numbers, allowing
the formation of infinite sets. That axiom does not allow the formation of sets that cannot be put
to a one-to-one correspondence with it, such as the set of real numbers. It does not define sets

that have cardinalities greater than Ro. So, a set with a cardinality greater than the one implied

by the Axiom of Infinity cannot be deduced from the ZFC axioms. To define such a set requires a
new axiom of set theory. Any such set with higher cardinality will be inconsistent with the other
axioms as shown in this document, so a new axiom is not an option.

So, in conclusion, (|Q| = |Q)).

Side Note: There is nothing in the definition of equivalent sets that prevents all infinite sets from
being equivalent to each other. In other words, the definition of equivalent sets regards the
elements of all infinite sets as indivisible units, and in that respect, they are indistinguishable
from one another — the definition does not depend on the nature of the elements of the two sets.
For example, the different natures of the rational numbers and the irrational numbers is irrelevant
to the definition of equivalence. Consequently, two infinite sets always satisfy the definition of
equivalence.
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2.5 Cantor’s Power Set Theorem Refuted
Georg Cantor [1845-1918], and his lackeys, believe in their hearts that the cardinality of any set
is strictly less than the cardinality of its power set (VA (|4| < |9(A4)|)). Such a belief is

shamefully called “Cantor’s (Power Set) Theorem”. However, a set can be defined that is an
exception to that theorem, making the “theorem” FALSE.

Theorem: There exists a set, 4, such that |[4| = |§(A4)|
Proof:
d4 (AX (4 = p(4) U X))). [see below]

Af(fe {h:h:A—- HPA)} A f(x)={x}). [since for each x € 4 there is {x} € 0(A4)]
dg(ge {h:hp(d) > A} A g(x)=x). [since 0(A4) S A from the first step]

A 3 (A). [since fis one-to-one and into]

|[A| < |§(A4)]. [from cardinality theory]

$(4) 2 A. [since g is one-to-one and into]

|$9(4)| < |4]. [from cardinality theory]

|[4| = |§(4)|. [from the Schréder-Bernstein theorem] B

The crucial step is the first one that states that the set 4 exists. Let X = {0} to satisfy the
existence of X in the first step of the proof. Then, the set 4 is defined as follows.

The set A4 satisfies the following conditions.

I. 0e€dA.

2. O eAd

3. Vx(x€4o {x} €A

4. Vxo, ..o, Xn (X05 .o, Xn € A > {X0, ..., x,} € A) [forall n € N]

5. on,xl,xz, (X(), X1y, X2, «n. - A > {X(), X1, X2, } & A)

Conditions 2 to 5 show that all the members of §(A4) are also members of 4. Condition 1 shows
that the member of X is also a member of 4. By definition of 4, 4 contains only the members of
§(A4) and X, therefore 4 = §(A) U X. The first step of the proof of the Theorem is therefore TRUE.

Even if the Theorem above is rejected, Cantors Theorem is still refuted by Theorem 12 below.

2.5.1 Power Sets And the Diagonal Method

Cantor’s theorem can be refuted by using the diagonal method instead of the method shown in the
preceding section. The following theorem says that, if a set has the same cardinality as that of
the natural numbers, then the cardinality of the power set of that set is the same as the
cardinality of the natural numbers. This is represented by the following theorem.

Theorem 12: VS ((|4| = IN]) = (|%(4)| = |N]))

Proof:
Each subset of A can be represented by a binary sequence where a 1 in the i position of the
sequence indicates that the i™ element of 4 is in the subset, and a 0 indicates that it is not. A list
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of all the permutations of the binary sequence represents all the possible subsets of 4. The
cardinality of the list of such sequences represents the cardinality of the power set of A. The
diagonal method can then be used on the list of sequences with the same failure (for the same
reason) as when it is used with the unit interval.

As an illustration, for the set of natural numbers, {0, 1, 2, ...}, we can theoretically form the
following list of sequences (in no particular order).

0.1, 2, - (elements of the set of natural numbers)

0, 0, 0, -+ (sequence represents no elements)

1, 0, 0, - (sequence represents the element 0)

0, 1, 0, -~ (sequence represents the element 1)

1, 1, 0, - (sequence represents the elements 0 and 1)
0, 0, 1, - (sequence represents the element 2)

1, 0,1, -~ (sequence represents the elements 0 and 2)
0, 1, 1, - (sequence represents the elements 1 and 2)

1, 1, 1, -~ (sequence represents the elements 1, 2, and 3)

It can be proven that the list of binary sequences is equivalent to the unit interval, therefore the
cardinality of §(A4) is the same as that of [0, 1]. This document proves that the cardinality of

[0, 1] is the same as that of N, contrary to the subjective belief and fantasy of virtually all
mathematicians at the time of this writing. Note that each binary sequence corresponds to a
number in base 2, which corresponds to a number in base 10 in the unit interval. B

If A =N, then by Theorem 12, |N| = |(N)|, thus disproving Cantor’s theorem, V4 (|4| < |§(4)]|).

2.6 The Death of the Transfinite Cardinals

It was proven in Chapter 1 that Cantor’s diagonal argument for claiming that the unit interval is
non-denumerable is invalid. It was proven in the first few sections of Chapter 2 that the set of

irrational numbers precede the set of rational numbers (Q < Q), and vice versa (Q < Q). It was

also proven in the same chapter that Cantor’s theorem is FALSE (= V 4 (|4] <|$(4)])). We now
put these facts together to rid mathematics of the factitious idea of transfinite cardinal numbers
(except for Ny).

The Schroder-Bernstein Theorem, (4 X B) A (B X C) = (4 ~ B), proves that (Q S Q) A (Q 2
Q) = (Q ~ Q). And, by definition, |Q| = |Q|. But mathematicians accept that |Q| = K.
Therefore, |Q| = Ro. That is to say that the irrational numbers are denumerable, contrary to the
accepted belief by current mathematicians.

By definition, R=Q U Q, and so [R|=|Q U Q| = |Q| + |Q| = Ro + 8¢ = R, since Q N Q = &.
But, because |[N| = |R| = Ry, then N ~ R. So, THE REAL NUMBERS ARE DENUMERABLE.
Who would have thought? — well, the mathematicians before Cantor would have thought.

Note that, so far, there was no mention of X;, N,, N3, and so forth. Those fictions were invented
by Cantor’s theorem (you know, the FALSE one). But, by a recursive application of Theorem 12,
199(...((A))...)| = IN| = |R| = R, for all 4 equivalent to N. Bye-bye, R, N, K3, and so forth.
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Epilogue

The previous two chapters mark the death of transfinite cardinal numbers (except for Ny) because

all infinite sets are denumerable. The definition of transfinite cardinal numbers depended upon
Cantor’s theorem and the non-denumerability of the real numbers. This document has dismissed
those two fantasies. There seems to be no hope of any other set being proven non-denumerable.

This now raises the question: How is it that mathematicians (and logicians and others) failed to
recognise that the diagonal argument and the power set argument are invalid? And, how is it that
they failed to recognise that the very definition of Dedekind cuts for irrational numbers proves
that the set of irrational numbers is equivalent to the set of rational numbers?

The answers to these questions are speculative, but here are some possibilities.

1.

What mathematicians may have done was to interpret the diagonal method independently of
the whole argument (for example, they defined the method to construct a real number in the
unit interval using an arbitrary digit at each decimal place), then attempted to project that
method to the context of the antithesis without realising that the diagonal number was being
used in its own definition in that context.

Perhaps they assumed, hypothetically, that the numbers in the unit interval are denumerable,
then tried to “construct” a number (which they dogmatically asserted to exist) from that set,
and then concluded that a number can always be “constructed” that does not belong to the
set, so they concluded that such a denumerable set cannot exist. Here, again, they failed to
realise that the diagonal number would, by the antithesis itself, be in that set. Therefore, no
such number can be constructed (as shown in this document). Mathematicians dogmatically
claim that the diagonal number is guaranteed to not be in the list of the antithesis, without
realising that the construction method is self-contradictory. So, the only thing that the
construction method guarantees is that the method is self-contradictory under the assumption
of the antithesis. Similarly for the power set argument.

Perhaps, by presenting the list representing the antithesis, and assuming that the diagonal
number exists but is not in the list, they failed to realise that the list is now a different list
from the original antithesis list (by the implication of the diagonal method), but continued to
assume that it is the same list because they fixated, in their minds, that it is the same list. As
a consequence, they wrongly imagined that it was impossible for “the (original) list” to
contain all the reals in the unit interval, when, in logical reality, it is only the new list that
does not contain the diagonal number. In other words, they wrongly thought that the
diagonal method applied to the original list, when, in fact, for the method to be valid, it
applies to a proper subset of the original list but not the original list itself. Similarly for the
power set argument.

Perhaps, mathematicians and logicians and others perceive some sort of mystique in the idea
of having different “levels” of infinity, and refuse to admit that their delusion is just a
fantasy. As a consequence, they stubbornly refuse to admit that there is anything wrong with
the diagonal and power set arguments.

2 13

Because of the wording of the argument, using such words as “construct”, “choose”, and
other misleading terms, they imagined that the diagonal argument is literally about trying to
construct some sort of metaphysical or hypothetical list, and so they imagined from the
presentation that such a list could not be constructed.

Perhaps, mathematicians and logicians are not as clever as they pretend to be, and do not
quite understand what genuine logic is about (was it Bertrand Russell who allegedly said
“Mathematics ... is a subject in which we do not know what we are talking about ...”?).
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With the Dedekind cuts, maybe no one thought of using the irrational number version of the
definition, or no one made the connection between the concept of equivalence and Dedekind cuts
(admittedly, there is not an extremely obvious connection).

It is incredible that mathematicians and others cannot see an obvious flaw in a children’s
argument (the diagonal argument especially). The reason for that failure may be that
mathematicians and logicians use too much unsubstantiated and confused subjective intuitions
instead of logical reasoning. This is what happens when they give priority to their intuitions over
genuine logical thinking.

Side Note: I find it personally disturbing to imagine how clueless I would have to be to not
recognise the obvious self-contradiction in the diagonal method.

3.1 Consequences of the Death of the Transfinite Cardinals

Of course, there are some advantages and disadvantages with the death of the higher transfinite
cardinal numbers.

3.1.1 Advantages

Some of the advantages of now realising that all infinite sets are denumerable include:

1. Mathematics will become more advanced as a result of the fact that there are no higher
transfinite cardinal numbers, because it is always of great benefit to mathematics (and
everything else) when bullshit is removed from it.

2. Transfinite cardinal arithmetic will now be simpler: if at least one of a and f are transfinite
cardinal numbers then o + B = aff = o = R,.

3. Certain so-called paradoxes that resulted from Cantor’s power set “theorem” can now be
ditched.

4. Mathematics lecturers can now shorten their courses on transfinite cardinals, and use the
spare time to go fishing (or better still, to learn to use some rigorous mathematical logic).

5. Mathematics teachers now need not embarrass themselves trying to defend the indefensible
when explaining the diagonal argument to intelligent students.

6. Young mathematical students now have something meaningful to write home about.

3.1.2 Disadvantages

Some of the disadvantages of now realising that all infinite sets are denumerable include:
1. Mathematics books need to be rewritten.

Mathematics courses need to be redesigned.

Al (artificial intelligence) needs to be retrained.

Mathematics dictionaries need to be rewritten.

Encyclopaedias need to be rewritten.

e

Internet websites need to be rewritten.
7. Apologies need to be made.

All this due to mathematical carelessness and incompetence in providing valid proofs.

Other disadvantages are:

1. Most mathematical theorems now need to be questioned given that most mathematicians
cannot even see an obvious flaw in a children’s (diagonal) argument.

2. The volumes of mathematical and philosophical books written on transfinite cardinals will
need to be burned, adding to the problem with global climate change.

3. Psychiatrists will now become overworked healing all the bruised mathematical egos.
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3.2 Concluding Remarks

So there we have it. The higher transfinite cardinal numbers — it was all just fantasy. So much
for the peer review system (maybe it ought to be called the “peer lackey system”). Looks like the
continuum has just lost its “power” (the one that it didn’t have). And that continuum hypothesis
thing — that nonsense can now be ditched.

In summary, both the diagonal and power set the arguments use a similar strategy, as follows.
Both arguments attempt to prove a non-equivalence between two sets by utilising a proof by
contradiction. The antithesis of the non-equivalence (ie: the equivalence of the two sets) involves
a function. The arguments attempt to prove that the function cannot be a bijection, meaning that
the function’s range must be a proper subset of the function’s co-domain (if the function is a
bijection, its range and co-domain will be equal). The arguments attempt to “construct” an entity
that exists in the co-domain but not in the range of the function. The contradiction resulting from
the “construction” of that entity is claimed to be the contradiction required by the proof by
contradiction, thereby concluding that function cannot be a bijection.

The flaw in both arguments is mainly this (as proven in this document):

1. The definition of the “constructed” entity is self-contradictory when used on the original
(hypothesised) function’s range (the range is assumed to be equal to the co-domain), so the
entity cannot exist and the argument fails. Note that it is invalid to use the entity’s self-
contradiction as the contradiction required by the proof by contradiction.

2. The definition of the “constructed” entity is not self-contradictory when used only on a
proper subset of the original (hypothesised) function’s range. But, in that case, no
contradiction with the original range arises, so the argument fails. That the entity is not a
member of a proper subset of the range does not prove that the function’s range cannot be
equal to its co-domain (ie: that it cannot be a bijection).

Besides the invalid arguments, this document proves that all infinite sets are indeed equivalent
anyway.

So, how long will it take mathematicians (and others) to cast transfinite cardinals into the bowel
movements of history (where they belong)? — 50 years? 100 years? 200 years? Such is the
stubbornness of human ignorance.

The Final Word: We can say that the transfinite cardinals bled to death from Dedekind cuts
(except for the sole survivor, Ny, poor thing, all alone in this big wide world of mathematics).

s TRANSFINITE CARDINALS #*#

o Rest In Peace ©

may the power of the continuum abandon them
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Proof of Theorems

This appendix presents the proofs of Theorems 1, 2, and 3.

A.1 Proof of Theorem 1
Proof of Theorem 1: AreS (VxS (r # x)) & L

Proof I:
dreS (VxeS (r # x)) & |[left expression of Theorem]

dreS (Vxe{r} (r # x) A VxeS\{r} (r # x)) < |[separation]
dreS (r #r) A VxeS\{r} (r # x)) & [simplification]
dreS (L) & L. |[because (r #r) < L]

dreS (VxeS (r # x)) & L [deduction from steps above| B

Proof 2:
(VreS (IxeS (r =x)) © T) = [tautology]

(—-VreS(dxeS (r =x)) & —T) = [negation]

(FreS(VxeS (r # x)) © 1) [De Morgan| &

Proof 3:
Lemma: a € 4 < Jx€4 (a = x). [tautology]|

(VreS (r € 8) & T) [tauiology]

(VreS (xS (r = x)) & T) [by Lemmal
(=(~VreS (AxeS (r = x))) © T) [double negation]
(=3reS (Vx€S (r # x)) & T) [De Morgan|

(FreS (VxeS (r # x)) & L) [negation]| B

A.2 Proof of Theorem 2
Proof of Theorem 2: (S, = §)) = —3dres, (VxeS, (r # x))

Lemma: a € A & Jx€4 (a = x) [tautology]

S2 = 81 = [antecedent of Theorem]

VyeS: (y € Si)) A VreS, (r € $5) = [definition of antecedent]
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VreSs, (r € 8)) = [deduction]

VreS, (Ix€S, (r = x)) = [by Lemma]
—(=Vres, (Ix€S, (r = x))) = [double negation]
—dres; (VxeS, (r # x)). [De Morgan|

(S, = 8)) = —~3Jres, (VxeSs, (r # x)) [deduction from steps above| B

A.3 Proof of Theorem 3
Proof of Theorem 3: (S, C S1) = IresS; (VxES, (r # x))
Lemma l: a € 4 & dx€4 (a = x) [tautology]

Lemma2:a & A & VxEA (a # x) [by negation of both sides of Lemma 1]

S> C Sy = [antecedent]

S €851 A S # 8 = [definition of antecedent]

VzeS (z€ 8S) A ~(VyeS: (y € §1) A VrES, (r € 8,)) = [definition expansion]

VzeS, (z€ S) A (—~VyeS (y € §) V - VresS (r € 8,)) = [De Morgan|

VzeS, (z € S) A -VyeS: (y € S1) vV VzES, (z € Si)) A =VreS: (r € S,) = [distribution]
1V VzES, (z € Si) A AreS: (r € S,) = [complement and De Morgan|

dresS (r € S2) = [deduction]

dres (VxeS$, (r # x)). [by Lemma 2]

(S C 8)) = Jres, (VxeS$, (r # x)) [deduction from steps above| B

Side Note: If you’re a pure mathematician and don’t understand the mathematical logic above, |
suggest that you get yourself educated in formal mathematical logic before you pretend to be an

expert in understanding and producing mathematical proofs (especially Cantor’s diagonal and
power set arguments, and similar arguments).



Appendix B

Proof by Contradiction

This appendix shows the proper meaning of a proof by contradiction, and the proper process to
conduct such a proof. Unfortunately, the meaning and logic underlying a proof by contradiction
seems to be misunderstood by most mathematicians (and logicians). This appendix explains the
proper logical basis and strategy for such a proof.

B.1 Introduction

A proof in pure mathematics is basically a sequence of statements that are logically derived from
any of the axioms (typically ZFC axioms), possibly in conjunction with other conditions,
concluding in a final statement. The final statement is called a “theorem”, which may itself be a
deductive implication. The most important point here is that all the statements must be logically
derived, meaning that they must be deductive implications. For example, if 4 represents any of
the axioms and 7 represents a theorem, then the proof of the theorem would be represented as

4 = T>. Alternatively, if 4 represents any of the axioms, C represents a condition, and F

represents the final statement, then the proof of the theorem «C = F> would be represented as

4 = (C = F). Note that <4 = (C = F) is logically equivalent to «(4 A C) = F>. Of course, a

proof may involve a large number of steps before the theorem is finally deduced. It is absolutely
important to note that NO arbitrary assumptions are allowed in a proof.

A deductive implication is an implication that is logically necessarily TRUE. “Necessarily TRUE”
means TRUE for all possible logic values (commonly called “truth values”) of the involved

statements. For example, (4 A B) = A> is a deductive implication because the statement is TRUE

for all logic values of 4 and B. The statement «(4 A B) = () is not a deductive implication
because it is not TRUE for all logical values of 4, B, and C; it is correctly represented as

(A N B)+# O.
The authoritative definition of a deductive implication is
A=>B =¢4((4A N —B) < 1),
where P < QO =4 0O(P A Q V —P A —Q), and O means ‘the argument is necessarily TRUE’.
For completeness, the definition of a contingent implication is
A — B =df ((A AN _‘B) <> J_),
where P <« Q =4f (P A Q VvV =P A _‘Q)
The following two definitions may also be useful.
_'(DA) =df 0(_‘14) and D(_'A) =d4f _'(<>A),

where ¢ means ‘not FALSE for all possible logic values of the argument’.

Side Note: Note that there is no talk of “possible worlds” here — such a fanciful notion is
completely unnecessary and not required by the laws of logic.

Fun Fact: (L A m4) © (A A L)< L. So,«<L = 4> and <4 = T) by definition, for any 4.
Therefore, (4 = 1) & (4 & 1).
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There are a few techniques for proving a theorem in logic and pure mathematics. One of those
techniques is called “proof by contradiction”. This technique directly utilises the actual
definition of a deductive implication even though it is traditionally called an “indirect proof™.

B.2 The Meaning of a Proof by Contradiction

A proof by contradiction is simply the application of the definition of a deductive implication.
For example, to prove «(C A D) = (>, the definition of deductive implication is applied to get
«(C AND A —C) < L, which, by inspection, is a TRUE statement. If 4 represents any of the
axioms, and 7 represents a theorem, then to prove the theorem from the axioms (4 = T), all that

is required is to prove «(4 A —T) < L>. So, if the conjunction of the negation of a theorem and

the axioms deductively imply a necessary falsehood (typically miscalled a “contradiction”), then,
by definition, the axioms deductively imply the theorem. Of course, proof by contradiction can

be used for arbitrary deductive implications. For example, to prove <P = Q> by contradiction
requires the proof of «( P A —=Q) < 1> for any statements P and Q. In Classical Logic and
Mathematics this is expressed as “the conjunction of P and —Q is a contradiction”.

Note especially that there was no mention of “assuming the contrary” — no assumptions
whatsoever have been utilised in the paragraph above. A proof by contradiction is purely a
deductive process by applying the actual definition of a deductive implication; there are no
assumptions to be made, hypothetically or otherwise.

B.3 The Proper Procedure for the Proof

Consider the deductive implication, 4 = T, to be proven by contradiction. 7 will be called the
‘thesis’, and its negation, —7, will be called the ‘antithesis’. The intention is to determine
whether «(4 A —T) < 1. Typically, it is not immediately obvious whether (4 A —T) is

necessarily FALSE (ie: a contradiction). In practice, some deductions need to be made from the
conjunction so that it does become obvious that it is necessarily FALSE.

Now a potential problem can arise in the deductions. An inept mathematician (or logician) may
introduce an arbitrary contradiction into those deductions (as was done with the diagonal and
power set arguments), thereby feigning that the proof has succeeded. As a safeguard, the
following process should be adopted.

Two distinct lines of derivations need to be made, one from the axioms (4) and another from the
antithesis (—T). Neither line of logic is to involve the thesis, and the axiom line must not involve
the antithesis directly or indirectly (if the antithesis is removed, the line of logic should still be
valid). The conclusions from both lines need to be contradictory together, not separately.

Symbolically, we have the line from the axioms, 4 = ... = (), and the line from the antithesis,
—-T = ... = (C,. C,and C, would be simple enough to conclude that «(C; A C;) < L> (ie: that C,
and C, are contradictory) by inspection. (It is known that if «(C; A C2) & L) then (4 A —T) <

1>.) If the contradiction is proven, then <4 = 7> will have been proven as well (by definition).

If a deductive implication of the form <4 = (C = T)» is to be proven by contradiction, then the
logically equivalent deduction, (4 A C) = T)), can be used. The axiom line would then be
deductions from (4 A C), and the antithesis would be —T.

To ensure that the contradiction is between the axioms and the antithesis, it is ABSOLUTELY
important to ensure that each line of logic is logically valid. This means that no assumptions are
to be made; each statement in each line of logic must be logically derived and validated. The
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antithesis is not assumed to be TRUE; it is simply considered, as required by the definition of
deductive implication. It is also ABSOLUTELY important that neither line of logic results in a
necessary falsehood (contradiction). If either line of logic results in a necessary falsehood, then,
of course, that would imply «(C; A C;) < 1>. But, in that case, the contradiction would be the

result of an introduced contradiction, rather than the result of 4 and —7 being contradictory
together. If a necessary falsehood does result from one of the lines of logic, then either an error
has been made or the lines are not separated enough.

Both the diagonal and power set arguments are examples of an invalid proof by contradiction. In
both cases, the contradiction is derived from the antithesis line (because it involves the
antithesis), not from a conjunction of the axioms with the antithesis. Furthermore, in both cases,
an arbitrary assumption is made by dogmatically assuming the existence of the “constructed”
entity (the definition of the entity is defined to be self-contradictory under the condition of the
antithesis, so no such entity can exist). In short, the contradiction is introduced (intentionally?),
not deduced.

Another way to reduce the possibility of error is to use mathematical logical rather than clever
intuitive wordings. For Classical Logic and Mathematics, this rules out “constructive” proofs.
Such proofs are subjective and can be misleading (as we have seen in the diagonal and power set
arguments); construction is best left for the building industry. A privately conceived
“constructive” proof should finally be converted to a proper logical proof using mathematical
logic or equivalent wording before being presented to the public.

A simple illustration of using proof by contradiction the proper way follows.

Theorem: (a <b) A (b<c)=>a<c.
Proof by contradiction.
Antithesis: a « c.

From the antithesis: (¢ « ¢) = (a > ¢).

From the axioms: (a <b) = (b—-a>0). (b<c) = (c—b>0). Therefore (b —a)+ (c—b)>0,
since the addition of two positive numbers is a positive number. But, (b —a) + (¢ —b) =c — a.
Therefore c—a>0. But(c—a>0) = (¢ >a) = (a # ¢).

The antithesis contradicts the axioms, therefore (a <b) A (b<c) = a<c.

Notice, firstly, that no assumption of anything being TRUE has been made in the proof. Secondly,
there are two distinct lines of logic; one from the antithesis, and another from the axioms (and the
antecedent of the theorem). If either line of logic had resulted in a contradiction, then an error
would have been made somewhere in the argument (sound familiar with the diagonal and power
set arguments?). Alternatively, the two lines of logic were not properly separated. Thirdly, and
most importantly, the line of logic from the axioms (and antecedent) does not involve the
antithesis in any way.

B.4 The Traditional Procedure for the Proof

In Classical Logic and Mathematics, an ‘assumption’ is a statement that is taken to be TRUE for
the purpose of an argument, and typically used as the antecedent in an implication. An
assumption can also be made when a statement is split into possible cases, one of which is the
TRUE case.

However, the expression “4 is TRUE” is ambiguous. It could mean ‘4 = TRUE’, or ‘4 <> T’. The
former means that 4 indicates only the value TRUE. The latter is equivalent to just 4 ((4 < T)
< A). Conversely, “4 is FALSE” could mean ‘4 = FALSE’, or ‘4 <> L’ (or just —4).
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In a traditional proof by contradiction, the negation of the conclusion (antithesis) of a theorem is
“assumed to be (hypothetically) TRUE” for the purpose of the proof. This business of assuming

that the antithesis, —T, is TRUE can only mean «—7 «> T), that is, it just means that =7 is being

considered. It cannot mean <=7 = TRUE»> because that would be to assume that —7 has only one
logic value (TRUE), which would eventually be proven to be the wrong value. However,
mathematicians do seem to mean <—7 = TRUE», and then give some sort of convoluted explanation
of why such an assumption implies its exact opposite. So, assuming that the antithesis is TRUE is
just verbiage that has no logical merit in itself, but is just an indication that the consideration of
the antithesis is a requirement by the proof by contradiction. For technical accuracy, in a
traditional proof by contradiction, one should merely “consider” the antithesis, not “assume that
the antithesis is TRUE”. In any case, in a logical deduction, there should not be any assumptions
of TRUE or FALSE, other than when considering separate cases of logic values.

The most serious drawback in the traditional proof by contradiction is the absence of distinctly
and clearly separating the antithesis lines of logic from the non-antithesis lines. The problem
here is that inept mathematicians could inadvertently (and even deliberately) introduce a self-
contradictory definition, claiming that the resulting contradiction is the one required by the proof
by contradiction (there is no need to give two examples here!).

In summary, in a traditional proof by contradiction, (1) do not use meaningless expressions like
“assume such-and-such [the antithesis| is TRUE” (say “consider such-and-such [the antithesis|”
instead), (2) distinctly separate the lines of logic that do not involve the antithesis clearly from
the lines of logic that do, making sure that no contradiction results from either of those two sets
of lines. In short, use the proper method of proof by contradiction as described in the previous

section.
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Glossary

B

bijection
A function, f, such that f:4 — B is one-to-one and onto. Consequently, there is a one-to-one
correspondence between A4 and B, and also 4 and B are equivalent (A ~ B).

C

cardinal number |A|
The family of sets that are equivalent to a given set, 4, denoted by |4|. There are other
equivalent ways of defining cardinal number. The cardinal number of the set of natural
numbers, N, is denoted by R, (ie: [N| = Ry).
|A| =df {X X ~ A}

cardinality
The cardinal number of a set.

D

denumerable
An infinite set that is equivalent to the set of natural numbers, N. An infinite set, A, is said
to be denumerable if A ~ N.

E

equivalent (sets) A~ B
Two sets, A and B, are said to be equivalent if it is possible to put them into a one-to-one
correspondence with each other, denoted by 4 ~ B. The statement 4 + B denotes that two
sets, 4 and B, are not equivalent (it is impossible to put them into a one-to-one
correspondence with each other). Note: two equivalent sets have the same cardinality.
A~ B =4

(e {g:gd— B} A VyeB (Ixed (lx) =y)) A Vi, 12€4 ((x) = f(x2)) — (x1 = x2)))
F

finite cardinal numbers
The set of cardinal numbers that are less than Ny, {x : x < Ro}. These are the cardinal

numbers for finite sets.

infinite set
The set 4 is said to be infinite if there exists X such that X C 4 and X ~ 4.



Glossary 33

N

natural numbers N
The set of positive whole numbers together with the number zero, denoted by N, or without

the number zero, denoted by N™.
N =df {0: 1: 25} N+ :df{1,2, 3,}

non-denumerable
An infinite set that is not equivalent to N. An infinite set, A, is said to be non-denumerable if

A+ N,

P

power set §(A)
The set of all subsets of a set, A, denoted by f(A4).

(4) = {X: XS A4}
precede (sets) AXB

A set A is said to precede a set B if there exists X such that X € Band X ~ 4. 4 X B denotes
that 4 precedes B. If A 3 B then, by definition, |4| < |B|.

proper subset ACB
The set, 4, whose entire members are also members of a set, B, where 4 is not equal to B,
denoted by 4 C B.

ACB =4 Vx(x€A—>x€B)A (A + B)

R

real numbers R

The union of the set of rational and irrational numbers, denoted by R.

S

strictly precede (sets) A<B
A set A is said to strictly precede a set B if A precedes B and A is not equivalent to B (A 3 B
AN A + B). A < B denotes that 4 strictly precedes B. 1f A < B then, by definition, |4| <|B].

subset A< B

The set, 4, whose entire members are also members of a set, B, denoted by 4 < B.

AS B =4Vx(x€A4A—x€B)

T

transfinite cardinal number
The set of cardinal numbers that are greater than or equal to Ny, {x : 8o < x}. These are the
cardinal numbers for infinite sets.
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U

unit interval
The real numbers between zero and one, inclusively, denoted by the closed interval [0, 1].
Note that the brackets are in bold type when indicating open or closed intervals.

[0, 1] =as{x:0<x AXx<1}



Mathematical Symbols

||
AANB

AV B

A=>B

A< B

f4— B
dom f
ran f

cod f
fx)

N+

@]

The cardinal number of A.

Logical conjunction of A and B.

Logical disjunction of A and B.

Logical negation of A.

Necessary truth.

Necessary falsehood.

Logical implication between 4 and B. Also called a deductive implication.

Logical equivalence between A and B.

Contingent implication between 4 and B. Also called a non-deductive implication.

Contingent equivalence between A and B. Also called a bi-conditional.

The symbol B is defined by the statement S.

A and B are identical by definition.

A and B are equivalent.

A and B are not equivalent.

The existential quantifier (“<there exists>\«at least one of> something such that ...”).

The universal quantifier (“for all\each\«every one> of something such that ...”).

The function ffrom the domain 4 to the co-domain B.
The domain of the function f.

The range of the function f.

The co-domain of the function f.

The image of x under the function f.

The set of natural numbers (includes the number 0).

The set of positive natural numbers (excludes the number 0).
The set of real numbers.

The set of rational numbers.

The set of irrational numbers.
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A< B
A\B
$(4)
A<SB

ACB

[0, 1]

The null set (called the “empty set” by unprofessional mathematicians who still use
the name taught to them in kindergarten).

The set A precedes the set B.

The set A strictly precedes the set B.

The set difference between sets 4 and B. Also called relative complement of B in A.
The power set of the set 4.

The set A4 is a subset of the set B.

The set 4 is a proper subset of the set B.

The smallest (and only) transfinite cardinal number (the other transfinite cardinals
are just smoke and mirrors).

The unit interval.
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