
ETAC Compilation and Run-time Error Codes
14 April 2018

Copyright © Victor Vella (2018)
All rights reserved.

This document presents a description of all the error and warning symbolic codes that may occur while compiling or
running an ETAC program. The RED headings indicate errors; the BLUE headings indicate warnings.

The following symbolic conventions are used in this document.

Symbol Meaning

‹x› separates x as a unit of information from the surrounding text.

… represents omitted text (as usual).

W
S represents a whitespace character (09H to 0DH, or 20H).

<EOF> represents the end of the file data.

Error and Warning Code Reference

ADDAP_A_BAD
Invalid destination token of addition reassignment statement, ‹… +=›.

Details
The destination of an addition reassignment statement ‹… +=› can only be a variable.

ANDAP_A_BAD
Invalid destination token of ‘and’ reassignment statement, ‹… and=›.

Details
The destination of an ‘and’ reassignment statement ‹… and=› can only be a variable.

BA_COCOMB
Invalid destination argument of compound object append statement, ‹… ++:=›.

Details
The destination argument of a compound object append statement ‹… ++:=› must evaluate to a compound object.

BA_DO
Invalid argument for ‘do’ statement, ‹do …›.

BA_EXITDOIF_DONEXTIF
Invalid argument for procedure exit statement, ‹exitdo_if› or ‹donext_if›.

BA_SCACCESS
Invalid argument for string character access expression, ‹…#…›.

BA_SCASN
Invalid argument for string character assignment statement, ‹…#… :=›.

BA_SCLACCESS
Invalid argument for string (last) character access expression, ‹…#*›.

BA_SCLASN
Invalid argument of string (last) character assignment statement, ‹…#* :=›.

Details
The argument of a string (last) character assignment statement ‹…#* :=› can only be a variable or a data member

name containing a string.

BA_SEACCESS
Invalid argument for sequence element access expression, ‹…%…›.

BA_SEQAP
Invalid destination argument of sequence append statement, ‹… +:=›.

Details
The destination argument of a sequence append statement ‹… +:=› must evaluate to a sequence or procedure.

BAD_ARG
Invalid destination argument of an assignment or reassignment statement, or of an increment or decrement
expression.

Details
An assignment statement ‹…<%… :=›, ‹…<%%… :=›, ‹… @=›, ‹…%… :=›, or reassignment statement ‹…
+=›, ‹… -=›, ‹… *=›, ‹… /=›, ‹… and=›, ‹… or=›, or an increment ‹…++› or decrement ‹…--› statement
has an invalid argument.

BAD_CMD
A script command has an invalid syntax.

BAD_COMMA_POS
Illegal position of comma token ‹,› within sequence or procedure.

Details
A comma token may not exist after the opening bracket, or before the closing bracket of a sequence or procedure.
The following examples are syntactically invalid ‹[,…]›, ‹[…,]›, ‹{ ,…}›, ‹{…,}›, ‹[,…,]› because a
(highlighted) comma exists after the opening bracket, or before the closing bracket of a sequence or procedure
(white-spaces are not relevant). However, the following examples are syntactically valid within a procedure: ‹`[,
…,`]›, ‹`{,…,`}› because they are not actual sequences or procedures. They are label commands to create a
sequence and a procedure when the procedure in which they exist is executed.

BAD_COMMA_SCOPE
Illegal scope of comma token ‹,› outside sequence or procedure.

Details
Comma tokens may exist only inside sequences or procedures. They must not exist outside all sequences and
procedures.

BAD_DEC
A decimal number is badly formed.

BAD_END_OPR_BRAK
Invalid delimiter following end operator bracket ‹)›.

Details
The character following an end operator bracket must be one of the following delimiter characters: WS, ‹)›, ‹]›, ‹}›,
‹,›, ‹;›. The end operator bracket (highlighted) in the following example is not followed by one of the valid
delimiter characters:
‹(A + B)add2 3 5› (invalid – perhaps there ought to be a space or semicolon after the end operator bracket).

BAD_END_PROC_BRAK
Invalid delimiter following end procedure bracket ‹}›.

Details
The character following an end procedure bracket must be one of the following delimiter characters: WS, ‹)›, ‹]›, ‹}›,
‹,›, ‹;›. The end procedure bracket (highlighted) in the following example is not followed by one of the valid

delimiter characters:
‹{…}add2 3 5› (invalid – perhaps there ought to be a space or semicolon after the end procedure bracket).

BAD_END_SEQ_BRAK
The character following an end sequence bracket ‹]› is not a valid delimiter.

Details
The character following an end sequence bracket must be one of the following delimiter characters: WS, ‹)›, ‹]›, ‹}›,
‹,›, ‹;›. The (highlighted) end sequence bracket in the following example is not followed by one of the valid
delimiter characters:
‹[3, 9, "hello", 2.7]add2 3 5› (invalid – perhaps there ought to be a space or semicolon after the end
sequence bracket).

BAD_INCL_FILE
Invalid inclusion file specified via the preprocessor inclusion directive ‹#include …›.

Details
An inclusion file could be invalid either because it is a binary TAC file or not an E\TAC script file.

BAD_INSTR
A text instruction has an invalid syntax.

BAD_INT
An integer is badly formed.

BAD_LABEL
Invalid label command ‹`a›.

Details
A script label command ‹`a› has an invalid syntax a.

BAD_MARK_VAL
Invalid mark object ‹!n›.

Details
A mark object ‹!n› has an invalid value (n must be an integer from 0 to 7).

BAD_MEM_VAL
Invalid memory object ‹&a› syntax.

Details
A memory object script command ‹&a› has an invalid syntax a (a must be a non-negative integer or a hexadecimal
string beginning with ‹0h›).

BAD_OBJ_TYPE
A comop determined that a required stack object was not of the correct type.

BAD_OBJ_VAL
A comop determined that a required stack object was of the correct type but had an inappropriate value.

BAD_OPR
Invalid script operator ‹&o›.

Details
A script operator ‹&o› has an invalid syntax o.

BAD_PP_COMMAND
Undefined preprocessor command.

Details
Valid preprocessor commands are: ‹::define›, ‹::include›, ‹::ifdef›, ‹::then›, ‹::elsedef›,
‹::else›, and ‹::endif›. Anything else beginning with two colons ‹::› will cause this error.

BAD_PP_OPERAND_NUM
Incorrect number of operands in conditional preprocessor directive.

Details
The ‹&and› and ‹&or› operators in the condition of a conditional preprocessor directive (‹::ifdef› or
‹::elsedef›) must have two or more operands. The ‹¬› operator must have exactly one operand. For
example,

‹&and (Name1 Name2 Name3)›

is syntactically valid, while

‹&and (Name)›

is invalid. Notice the required space around the parentheses.

BAD_PP_OPR
Undefined operator in conditional preprocessor directive.

Details
The only valid operators in the condition of a preprocessor conditional directive (‹::ifdef› or ‹::elsedef›)
are: ‹&and›, ‹&or›, and ‹¬›. This error message will occur if an ampersand ‹&› in the condition is not followed
by one of the three operator names. The operators in the following examples are invalid: ‹&AND›, ‹&And›, ‹&+›,
‹&go›, ‹& or›, ‹&or(›.

BAD_PP_THEN
Invalid delimiter for preprocessor ‹::then› command.

Details
At least one white-space must follow a preprocessor ‹::then› command. For example,

‹::thenABC›

is syntactically invalid.

BAD_PPNAME
A preprocessor definition name contains invalid characters or is badly formed.

Details
A PDN (preprocessor definition name) must begin and end with a colon (:). Any printable characters can be used
between the colons except any of the following delimiter characters or colons. A PDN must be right-delimited by
one of the following delimiter characters: WS, ‹)›, ‹]›, ‹}›, ‹,›, ‹;›. For example:

(1) ‹:MyPPName:sub2 …› is an invalid PDN because the (highlighted) character s is not an appropriate
delimiter (the PDN is supposed to be ‹:MyPPName:›).

(2) ‹:MyPP:Name:› is an invalid PDN because it contains a (highlighted) colon.

(3) ‹:My PP Name:› is an invalid PDN because it contains spaces.

(4) ‹:MyPPName …› is an invalid PDN because it does not have an ending colon (the PDN is supposed to be
‹:MyPPName:›).

(5) ‹:=10; …› is an invalid PDN because it does not have an ending colon before the (highlighted)
semicolon (perhaps it was meant to be part of an assignment statement, which requires at least one white-
space after the assignment symbol, as in ‹:=W

S10; …›).

BAD_SEMICOLON_SCOPE
Illegal scope of semicolon token ‹;› (terminator token) within expression or sequence.

Details
Terminator tokens ‹;› may not be enclosed within TAC or ETAC operator expressions ‹(…)› or sequences ‹[…]›.
Nor may they be enclosed within TAC procedures ‹{…}›. A procedure is a TAC procedure when the script file
containing the procedure is not identified as an ETAC script file. Terminator tokens may, and usually do, exist
within ETAC procedures.

BAD_STRING
A quoted string is badly formed (all strings in E\TAC are double-quoted).

Details
This error could be caused by:

(1) A string beginning but not ending with a quote character. For example, ‹"my string; add2
A B;<EOF>› is invalid because the string was not terminated before the end of the file (perhaps an ending
quote character ought to be present before the first semicolon). Note that if the ending quote character of a
string is missing, the next found quote character, which could be the beginning quote character of another
string, is taken as the ending quote character. This situation could cause spurious error events.

(2) An invalid escape sequence within a string. For example, (a) ‹"my string\N"›. The ‹\N› within the
string is invalid (perhaps it ought to be ‹\n›); (b) ‹"my string\"›. An ending quote character must not
be preceded by a backslash ‹\›. To indicate a string ending with a backslash, a space must follow the
backslash, as in the following example: ‹"my string\ "›. ‹\ › represents a single backslash within a
string.

(3) An inappropriate delimiter after the ending quote character of a string. For example, ‹"my
string"add2› is invalid because the ending quote character (highlighted) is not followed by an
appropriate delimiter (perhaps a space or semicolon ought to be present after the ending quote character).
The delimiter following an ending quote character of a string must be one of the following characters: WS,
‹)›, ‹]›, ‹}›, ‹,›, ‹;›.

(4) An appropriately delimited quoted string does not follow a preprocessor inclusion command
‹::include›. For example, (a) ‹::include "My File"add2› is invalid because the ending quote
character (highlighted) is not followed by an appropriate delimiter; (b) ‹::include 'My File"› is
invalid because the beginning quote character (highlighted) is not a double-quote character; (c)
‹::include My "File"› is invalid because the next non-whitespace character (highlighted) after the
inclusion command is not a double-quote character. The argument of an inclusion command must be a
double-quoted string delimited by at least one white-space on each side.

BAD_SYNTAX
Invalid syntax for object or sequence insertion statement, or for a sequence assignment or append statement.

Details
An object insertion statement ‹…<%… :=›, or a sequence insertion statement ‹…<%%… :=›, or a sequence
element assignment statement ‹…%… :=›, or a sequence element append statement ‹…%… +=› has an invalid
syntax, namely, the ‹:=› or ‹+=› token is not present where it is expected.

BAD_TERM_TOK
Missing last terminator token ‹;› in script.

Details
An E\TAC script file must end in a semicolon (terminator token).

BS_DO
Invalid syntax for ‘do’ statement, ‹do …›.

BS_EXITDO_DONEXT
Invalid syntax for procedure exit statement, ‹exitdo› or ‹donext›.

BS_FNT
Invalid syntax for function definition statement ‹fnt:…›.

BS_FNTCALL
Invalid syntax for function call expression ‹…()›.

BS_IF
Invalid syntax for ‘if’ statement, ‹if…endif›.

BS_SCASN
Invalid syntax for string character assignment statement, ‹…#… :=›.

BS_SCLASN
Expected assignment token ‹:=› in string (last) character assignment statement, ‹…#* :=›.

Details
A string (last) character assignment statement requires an assignment token ‹:=› (as in: ‹…#* :=›).

BS_SELN
Invalid syntax for data member selection expression ‹….…› chain.

BS_WHEN
Invalid syntax for ‘when’ statement, ‹when…endwhen›

COCOMB_A_BAD
Invalid destination argument of compound object append statement, ‹… ++:=›.

Details
The destination argument of a compound object append statement ‹… ++:=› must evaluate to a compound object.

COPYASN_A_BAD
Invalid destination token of copy assignment, ‹… @=›.

Details
The destination of a copy assignment ‹… @=› can only be a variable.

DATA
Expected procedure for data definition statement, ‹data:…›.

Details
A data definition statement must have an explicit procedure following it (as in: ‹data:{…}›).

DATA_A_NONE
Expected procedure for data definition statement, ‹data:…›.

Details
A data definition statement must have an explicit procedure following it (as in: ‹data:{…}›).

DEC_A_BAD
Invalid argument of decrement statement, ‹…--›.

Details
The argument of a decrement statement ‹…--› can only be a variable or data member containing an integer.

DIVAP_A_BAD
Invalid destination token of division reassignment statement, ‹… /=›.

Details
The destination of a division reassignment statement ‹… /=› can only be a variable.

DO_BODY_NONE
Expected procedure of ‘do’ statement, ‹do …›.

Details
A ‘do’ statement must have an explicit procedure following the “do” options (as in: ‹do [repeat […]] {…}› or
‹do [… [from …] [to …] [step …]] [with … of …] [while …] {…}›, where [X] indicates that
X is optional).

DO_REPA_BAD
Invalid ‹repeat› argument of a ‘do’ statement, ‹do …›.

Details
The optional ‹repeat› argument of a ‘do’ statement must evaluate to an integer.

DOFOR_FROMA_BAD
Invalid ‹from› argument of ‘do’ statement, ‹do …›.

Details
The ‹from› argument of a ‘do’ statement must evaluate to an integer.

DOFOR_STEPA_BAD
Invalid ‹step› argument of ‘do’ statement, ‹do …›.

Details
The ‹step› argument of a ‘do’ statement must evaluate to an integer.

DOFOR_TOA_BAD
Invalid ‹to› argument of ‘do’ statement, ‹do …›.

Details
The ‹to› argument of a ‘do’ statement must evaluate to an integer.

DOFOR_VAR_BAD
Expected variable in ‘do’ statement, ‹do …›.

Details
The “for” clause of a ‘do’ statement must begin with a variable.

DONEXT_SC_NONE
Expected semicolon ‹;› following ‘donext’ statement.

Details
An ‘donext’ statement must have a semicolon following it (as in: ‹donext;›).

DONEXTIF_A_BAD
Invalid ‹donext_if› argument.

Details
A ‹donext_if› argument must evaluate to an integer interpreted as a boolean value.

DOWHILE_A_BAD
Invalid ‹while› argument of a ‘do’ statement, ‹do …›.

Details
The ‹while› argument of a ‘do’ statement must evaluate to an integer interpreted as a boolean value.

DOWITH_OF_NONE
Expected ‹of› token after ‹with› variable of ‘do’ statement, ‹do …›.

Details
A ‘do’ statement must have an ‹of› token after the ‹with› variable (as in: ‹do … with … of …›).

DOWITH_OFA_BAD
Invalid ‹of› argument of “with” clause in ‘do’ statement, ‹do …›.

Details
The ‹of› argument of the “with” clause in a ‘do’ statement must evaluate to a sequence or procedure.

DOWITH_VAR_BAD
Expected variable after ‹with› token of ‘do’ statement, ‹do …›.

Details
A variable is required after the ‹with› token of a ‘do’ statement, ‹do …›.

DUPL_COMMA
Illegal duplication of comma token ‹,›.

Details
A comma token may not exist after another one. It is invalid to have one comma following another with only white-
space or no space in-between. The following examples are syntactically invalid ‹[…, ,…]›, ‹{…,,…}›
because they contain a (highlighted) comma following another with only white-space or no space in-between. Note
that semicolons ‹;› within an ETAC procedure (the usual case) are internally converted into commas, so this error
message may occur if a semicolon follows another in an ETAC procedure. A procedure is an ETAC procedure
when the script file containing the procedure is identified as an ETAC script file.

EMPTY_STACK
An attempt was made to access an object from an empty stack.

EXITDO_SC_NONE
Expected semicolon ‹;› following ‘exitdo’ statement.

Details
An ‘exitdo’ statement must have a semicolon following it (as in: ‹exitdo;›).

EXITDOIF_A_BAD
Invalid ‹exitdo_if› argument.

Details
An ‹exitdo_if› argument must evaluate to an integer interpreted as a boolean value.

EXPECTED_CLOSE_BRAK
Expected closing parenthesis ‹)› in conditional preprocessor directive.

Details
An ‹&and› or ‹&or› operator in a conditional preprocessor directive (‹::ifdef› or ‹::elsedef›) must be
followed by at least one white-space then the operands of the operator enclosed within white-space delimited
parentheses. For example,

‹&and (Name1 Name2 Name3)›

is syntactically valid. Notice the required space around the parentheses. Note that a missing ending parenthesis
does not necessarily result in this error message — a different error message can occur instead.

EXPECTED_OPEN_BRAK
Expected opening parenthesis ‹(› in conditional preprocessor directive.

Details
An ‹&and› or ‹&or› operator in a conditional preprocessor directive (‹::ifdef› or ‹::elsedef›) must be
followed by at least one white-space then the operands of the operator enclosed within white-space delimited
parentheses. For example,

‹&and (Name1 Name2 Name3)›

is syntactically valid. Notice the required space around the parentheses.

 ‹&and (Name1 Name2 Name3)›

is invalid because the opening parenthesis is not followed by a white-space.

EXPECTED_THEN
Excess conditions in conditional preprocessor directive.

Details
There should be exactly one condition each for a preprocessor ‹::ifdef› or ‹::elsedef› command. A
‹::then› command should be where the second condition is (the second and subsequent conditions are
syntactically invalid). For example,

‹::ifdef Name1 Name2 ::then … ::endif›

is syntactically invalid because the ‹::then› command should exist in place of the (highlighted) condition
‹Name2›. The example is made syntactically valid as follows

‹::ifdef Name1 ::then … ::endif›.

This error condition typically occurs when a space is mistakenly inserted into a condition consisting of a single
name, as in the following (syntactically invalid) example.

‹::ifdef FILE NAME ::then … ::endif›

The programmer intended to write

‹::ifdef FILENAME ::then … ::endif›.

FEW_SEQ_ELMS
An attempt was made to access a non-existent sequence element that should have existed at a specified index.

FEW_STACK_ARGS
A comop requires more arguments than were found on the relevant stack.

FNT_A1_NONE
Expected opening parenthesis ‹(› for function definition statement, ‹fnt:…›.

Details
A function definition statement must have an opening parenthesis following the ‹fnt:› token (as in: ‹fnt:(…)
…›).

FNT_A2_NONE
Expected procedure for function definition statement, ‹fnt:…›.

Details
A function definition statement must have an explicit procedure following the closing parenthesis (as in: ‹fnt:
(…){…}›).

FNT_AP_BAD
Invalid parameters for function definition statement, ‹fnt:…›.

Details
The parameters of a function definition statement must be explicit variable names (as in: ‹fnt:(par ···)…›, where
par represents a parameter).

FNTCALL_A1_BAD
Invalid variable for function call expression, ‹…()›.

Details
A function call expression must have an explicit variable name preceding the parenthesis.

FNTCALL_A2_NONE
Expected opening parenthesis ‹(› for function call expression, ‹…()›.

Details
A function call expression must have an opening parenthesis immediately following the variable name.

GENERAL_ERR
A non-specific error event occurred.

IF_A_NONE
Missing condition for ‘if’ statement, ‹if…endif›.

Details
An ‘if’ statement must have at least one condition (followed by the ‹then› token) after the ‹if› token.

IF_AC_BAD
Invalid condition of ‘if’ statement, ‹if…endif›.

Details
Each condition of an ‘if’ statement must evaluate to an integer interpreted as a boolean value.

IF_B_NONE
Unmatched ‹endif› of ‘if’ statement, ‹if…endif›.

Details
An ‘if’ statement must begin with the ‹if› token.

IF_BAD
Invalid ‘if’ statement structure, ‹if…endif›.

Details
An ‘if’ statement must have the following structure: ‹if *([not] … then {…}) [else {…}] endif›,
where *(X) indicates one or more X, and [X] indicates that X is optional.

IF_E_NONE
Unmatched ‹if› of ‘if’ statement, ‹if…endif›.

Details
An ‘if’ statement ‹if…endif› must end with the ‹endif› token.

INC_A_BAD
Invalid argument of increment statement, ‹…++›.

Details
The argument of an increment statement ‹…++› can only be a variable or data member containing an integer.

INVALID_LABEL
Invalid destination for an allocation ‹… :-› or assignment ‹… :=› statement.

Details
In a TAC script file, the destination token of an allocation or assignment statement must be in the form of a
command name or label command name. The destination is not an actual command or label command that is
executed. The destination is internally converted to a string as appropriate for an allocation or assignment
command. However if the destination is not in the form of a command name or label command name, for example
it might be a string, then this error message will occur. For example, the following are syntactically invalid:

‹"Var" :- 10;›, ‹&Var := "string";›, ‹[3, 2] := 3.3;› because the (highlighted) destination of the
allocation or assignment statement is not in the form of a command name or label command name. The following
example ‹`Var := "string";› is syntactically valid because the destination of the assignment statement is in
the form of a label command. However, the destination is typically in the form of a command, not a label
command.

In an ETAC script file, the destination token of an allocation or assignment statement may be other than in the form
of a command name or label command name.

LIBERR
Unhandled programmer-initiated external TAC library error.

Details
A function in an external TAC library was called (typically via @ImportLib), and returned an error which was not
handled by the caller. Functions in external TAC libraries are custom functions implemented with the C++
programming language, and created by external manufacturers, but can be called from ETAC code. Such a function
can return custom errors created by the external manufacturer. If those custom errors are not handled by the caller
of the function, this error event will occur (this error event can still occur even if the custom errors are handled by
the caller). The caller can define @OnLibErr() in the data object returned by @ImportLib to handle this error
event.

The following code illustrates the essentials of how to handle a custom error returned from a function called in an
external TAC library.
MyLibDataObj :- @ImportLib "ExternalTACLib.dll";
MyLibDataObj.@OnLibErr := fnt:(pFntOrd[*int*] pErrCode[*int*] pDataSeq[*seq*])
{

 … [* Your code to handle the error goes here. *]
 exit_err :#ETP_RTN_LIBERR:; [* Optional if you want to produce this error
event and end the ETAC session. *]
};
MyLibDataObj.LibFnt();

The italic sections are replaced with your own appropriate text. @OnLibErr() is automatically executed if a
function in MyLibDataObj (eg: LibFnt()) returns ccETP_RTN_LIBERR when called.

MISMATCHED_BRAKS
Unmatched sequence, procedure, or operator bracket.

Details
At least one sequence, procedure, or operator bracket is not matched with its corresponding bracket. Sequence
brackets are ‹[› and ‹]›, procedure brackets are ‹{› and ‹}›, and operator brackets are ‹(› and ‹)›.

MISSING_ARG
Missing size expression ‹|…|› argument.

Details
This error message occurs when an ETAC size expression has no argument. For example, ‹| |› and ‹||› are
syntactically invalid because each has no argument.

MISSING_ENDIF
Unmatched ‹::ifdef› in conditional preprocessor directive.

Details
Each ‹::ifdef› command in a conditional preprocessor directive must correspond with an ‹::endif› command.
This implies that there must be the same number of ‹::ifdef› commands as there are ‹::endif› commands.
This error message occurs if there is an ‹::ifdef› command that does not correspond with an ‹::endif›
command.

MULTAP_A_BAD
Invalid destination token of multiplication reassignment statement, ‹… *=›.

Details
The destination of a multiplication reassignment statement ‹… *=› can only be a variable.

NEG
Invalid negation expression ‹~…› argument.

Details
A negation expression argument must evaluate to an integer or decimal number.

NEG_A_BAD
Invalid negation expression ‹~…› argument.

Details
A negation expression argument must evaluate to an integer or decimal number.

NO_APP_FNT
No application call-back function was specified.

Details
An attempt was made to call a function defined in a user-designed application program via the ‘run_app_fnt’
TAC command in an ETAC or TAC code file, but that function was not specified to the ETAC for Applications
program (AppETAC.dll) within the user-designed application program. This error event could occur if the user-
designed application program was improperly designed. See the provider of the user-designed application program
for an update.

This error event will also occur if run_app_fnt is executed in an ETAC or TAC code file via the Run ETAC
Scripts program (RunETAC.exe). The Run ETAC Scripts program is not designed to execute functions in a
user-designed application program.

NO_DICT_ITEM
A dictionary item name was searched for on the dictionary stack but was not found.

NO_INCL_FILE
Inclusion file specified via preprocessor inclusion directive ‹#include …› not found.

NO_LIB_ACCESS
Function not accessible in external TAC library.

Details
An attempt was made to call a function in an external TAC library, but that function was not accessible even though
the library was successfully loaded. This error event could occur if the library was improperly designed. See the
provider of the library for an update.

This error event can also occur if an attempt was made to call a function belonging to an external TAC library that
was unloaded, and subsequently the same or a different library was loaded before the call. When a library is
unloaded (typically via @Release(), or sometimes unload_lib), any references to the library’s functions
become permanently invalid, even if the same library is loaded again.

NO_LOADED_LIB
External TAC library not loaded.

Details
An attempt was made to call a function in an external TAC library, but that library was not loaded or was previously
loaded then unloaded. An external TAC library needs to remain loaded (typically via @ImportLib, or sometimes
load_lib) before any of its functions can be run.

NO_PP_THEN
Expected ‹::then› in conditional preprocessor directive.

Details
The condition of a conditional preprocessor directive (‹::ifdef› or ‹::elsedef›) must be followed by the
‹::then› command. For example,

‹::ifdef Name … ::endif›

is syntactically invalid because the ‹::then› command does not follow the condition ‹Name›. The example is
made syntactically valid as follows

‹::ifdef Name ::then … ::endif›.

NOT_A_CMD
Intrinsic operator specified as a command.

Details
An intrinsic operator must be specified as an operator not as a command. The following two examples, ‹add› and
‹CMD:add›, are syntactically invalid because they are operators not commands, and should be expressed as ‹&add›
and ‹OPR:add›, respectively.

NOT_A_CMD_LBL
Intrinsic label operator specified as a label command.

Details
An intrinsic label operator must be specified as a label operator not as a label command. The following two
examples, ‹`add› and ‹LBC:add›, are syntactically invalid because they are label operators not label commands,
and should be expressed as ‹`&add› and ‹LBO:add›, respectively.

NOT_AN_OPR
Intrinsic command specified as an operator.

Details
An intrinsic command must be specified as a command not as an operator. The following two examples, ‹©›
and ‹OPR:copy›, are syntactically invalid because they are commands not operators, and should be expressed as
‹copy› and ‹CMD:copy›, respectively.

NOT_AN_OPR_LBL
Intrinsic label command specified as a label operator.

Details
An intrinsic label command must be specified as a label command not as a label operator. The following two
examples, ‹`©› and ‹LBO:copy›, are syntactically invalid because they are label commands not label
operators, and should be expressed as ‹`copy› and ‹LBC:copy›, respectively.

NOT_LIB
Library is not recognised as an external TAC library.

Details
An attempt was made to load an external TAC library (typically via @ImportLib, or sometimes load_lib), but
that library (DLL) was not recognised as an external TAC library. This error event occurs when the DLL was in fact
loaded but was not found to be an external TAC library. Specifying a non external TAC library as the argument for
@ImportLib or load_lib will cause this error event.

OBJINS_A1_BAD
Invalid left argument of object insertion statement, ‹…<%… :=›.

Details
The left argument of an object insertion statement must evaluate to a sequence or procedure.

OBJINS_A2_BAD
Invalid right argument of object insertion statement, ‹…<%… :=›.

Details
The right argument of an object insertion statement must evaluate to a flat integer sequence.

OBJINS_ASN_BAD
Expected assignment token ‹:=› in object insertion statement, ‹…<%… :=›.

Details
An object insertion statement requires an assignment token ‹:=› (as in: ‹…<%… :=›).

ORAP_A_BAD
Invalid destination token of ‘or’ reassignment statement, ‹… or=›.

Details
The destination of an ‘or’ reassignment statement ‹… or=› can only be a variable.

RES_WRD
Invalid use of reserved word.

SCACCESS_A1_BAD
Invalid left argument of a string character access expression, ‹…#…›.

Details
The left argument of a string character access expression must evaluate to a string.

SCACCESS_A2_BAD
Invalid right argument of a string character access expression, ‹…#…›.

Details
The right argument of a string character access expression ‹…#…› must evaluate to an integer.

SCASN_A1_BAD
Invalid destination argument of string character assignment statement, ‹…#… :=›.

Details
The left argument of a string character assignment statement ‹…#… :=› can only be a variable or a data member
name containing a string.

SCASN_A2_BAD
Invalid right argument of string character assignment statement, ‹…#… :=›.

Details
The right argument of a string character assignment statement ‹…#… :=› must evaluate to an integer, but cannot
be a sequence access ‹…%…› or member selection ‹….…› expression.

SCLACCESS_A_BAD
Invalid argument of a string (last) character access expression, ‹…#*›.

Details
The left argument of a string (last) character access expression must evaluate to a string.

SCLASN_A_BAD
Invalid argument of string (last) character assignment statement, ‹…#* :=›.

Details
The argument of a string (last) character assignment statement ‹…#* :=› can only be a variable or a data member
name containing a string.

SCLASN_ASN_BAD
Expected assignment token ‹:=› in string (last) character assignment statement, ‹…#* :=›.

Details
A string (last) character assignment statement requires an assignment token ‹:=› (as in: ‹…#* :=›).

SEACCESS_A1_BAD
Invalid left argument for sequence element access expression, ‹…%…›.

Details
The left argument of a sequence element access expression must evaluate to a sequence or procedure.

SEACCESS_A2_BAD
Invalid right argument for sequence element access expression, ‹…%…›.

Details
The right argument of a sequence element access expression ‹…%…› must evaluate to a flat integer sequence.

SEAP_A1_BAD
Invalid left argument of a sequence element append statement, ‹…%… +=›.

Details
The left argument of a sequence element append statement ‹…%… +=› must evaluate to a sequence or procedure.

SEAP_A2_BAD
Invalid right argument of a sequence element append statement, ‹…%… +=›.

Details
The right argument of a sequence element append statement ‹…%… +=› must evaluate to a flat integer sequence.

SEAP_ASN_BAD
Expected append token ‹+=› in sequence element append statement, ‹…%… +=›.

Details
A sequence element append statement requires an append token ‹+=› (as in: ‹…%… +=›).

SEASN_A1_BAD
Invalid left argument of a sequence element assignment statement, ‹…%… :=›.

Details
The left argument of a sequence element assignment statement ‹…%… :=› must evaluate to a sequence or
procedure.

SEASN_A2_BAD
Invalid right argument of a sequence element assignment statement, ‹…%… :=›.

Details
The right argument of a sequence element assignment statement ‹…%… :=› must evaluate to a flat integer
sequence.

SEASN_ASN_BAD
Expected assignment token ‹:=› in sequence element assignment statement, ‹…%… :=›.

Details
A sequence element assignment statement requires an assignment ‹:=› token (as in: ‹…%… :=›).

SELN_A1_BAD
Invalid first argument of a data member selection expression, ‹….…› chain.

Details
The first argument of a data member selection expression ‹….…› chain must evaluate to a data object.

SELN_AML_BAD
Invalid middle or last argument of data member selection expression ‹….…› chain.

Details
Each middle argument of a data member selection expression ‹….…› chain must be a variable, procedure, function
call expression ‹…()›, or sequence element access expression ‹…%…›, and the last argument must be a variable,
procedure, function call expression, sequence element access expression, or variable followed by
increment\decrement tokens ‹++|--›.

SEQAP_A_BAD
Invalid destination argument of sequence append statement, ‹… +:=›.

Details
The destination argument of a sequence append statement ‹… +:=› must evaluate to a sequence or procedure.

SEQINS_A1_BAD
Invalid left argument of sequence insertion statement, ‹…<%%… :=›.

Details
The left argument of a sequence insertion statement ‹…<%%… :=› must evaluate to a sequence or procedure.

SEQINS_A2_BAD
Invalid right argument of sequence insertion statement, ‹…<%%… :=›.

Details
The right argument of a sequence insertion statement ‹…<%%… :=› must evaluate to a flat integer sequence.

SEQINS_ASN_BAD
Expected assignment token ‹:=› in sequence insertion statement, ‹…<%%… :=›.

Details
A sequence insertion statement requires an assignment token ‹:=› (as in: ‹…<%%… :=›).

SIZE
Invalid size ‹|…|› expression argument.

Details
A size expression argument must not be an integer or decimal number and cannot contain commas or semicolons at
the top level.

SIZE_A_BAD
Invalid size ‹|…|› expression argument.

Details
A size expression argument must not be an integer or decimal number and cannot contain commas or semicolons at
the top level.

SIZE_A_NONE
Missing size expression ‹|…|› argument.

Details
This error message occurs when an ETAC size expression has no argument. For example, ‹| |› and ‹||› are
syntactically invalid because each has no argument.

SUBAP_A_BAD
Invalid destination token of subtraction reassignment statement, ‹… -=›.

Details
The destination of a subtraction reassignment statement ‹… -=› can only be a variable.

TOO_MANY_ENDIF
Unmatched ‹::endif› in conditional preprocessor directive.

Details
Each ‹::ifdef› command in a conditional preprocessor directive must correspond with an ‹::endif› command.
This implies that there must be the same number of ‹::ifdef› commands as there are ‹::endif› commands.
This error message occurs if there is an ‹::endif› command that does not correspond with an ‹::ifdef›
command.

UNDEF_PPNAME
Undefined preprocessor definition name.

Details
A preprocessor definition name was not defined (or was inaccessible) via the ‹::define› preprocessor directive
or the command-line keyword, ‹PPDEFS=pp-defs›.

UNDEFINED_CUST
Undefined custom comop numeric identifier.

Details
A custom comop numeric identifier is not defined in any loaded comop DLL.

UNEXPECTED_ELSE
Unexpected ‹::else› in conditional preprocessor directive.

Details
The ‹::else› command of a conditional preprocessor directive must be after the ‹::then› command of the last
‹::ifdef› or ‹::elsedef› command of that directive. For example,

‹::ifdef Name ::then … ::else … ::else … ::endif›

is syntactically invalid because the (highlighted) ‹::else› command is not after the last ‹::ifdef› or
‹::elsedef› command. Instead, it is after another ‹::else› command. There must be no more than one
‹::else› command in a conditional preprocessor directive, so the example is made syntactically valid as follows

‹::ifdef Name ::then … ::else … ::endif›.

This error message can also occur if an ‹::else› command is outside of all conditional preprocessor directives.

UNEXPECTED_ELSEDEF
Unexpected ‹::elsedef› in conditional preprocessor directive.

Details
An ‹::elsedef› command of a conditional preprocessor directive must be after the ‹::then› command of the
last ‹::ifdef› or ‹::elsedef› command of that directive. For example,

‹::ifdef Name1 ::then … ::else … ::elsedef Name2 ::then … ::endif›

is syntactically invalid because the (highlighted) ‹::elsedef› command is not after the ‹::then› command of
the last ‹::ifdef› or ‹::elsedef› command. Instead, it is after the ‹::else› command. The example is made
syntactically valid as follows

‹::ifdef Name1 ::then … ::elsedef Name2 ::then … ::else … ::endif›.

This error message can also occur if an ‹::elsedef› command is outside of all conditional preprocessor
directives.

UNEXPECTED_THEN
Unexpected ‹::then› in conditional preprocessor directive.

Details
A ‹::then› command of a conditional preprocessor directive must be after the ‹::ifdef› command or each
‹::elsedef› command of that directive. For example,

‹::ifdef Name ::then … ::else … ::then … ::endif›

is syntactically invalid because the (highlighted) ‹::then› command is not after the last ‹::ifdef› or

‹::elsedef› command. Instead, it is after an ‹::else› command. The example is made syntactically valid as
follows

‹::ifdef Name ::then … ::else … ::endif›.

The following example is also syntactically invalid for the same reason as in the previous example

‹::ifdef Name ::then … ::then … ::then … ::endif›.

The (highlighted) ‹::then› command must not follow another ‹::then› command.

This error message can also occur if a ‹::then› command is outside of all conditional preprocessor directives.

UNEXPECTED_TOK
Invalid token in conditional preprocessor directive.

Details
The condition of a preprocessor ‹::ifdef› or ‹::elsedef› directive contains an invalid token.

VOID_BAD
Invalid use of the void statement.

Details
An attempt was made to redefine the void statement (void). The void statement must not be altered.

PAREN_CMS_BAD
There must be no comma tokens ‹,› within the top level of parentheses.

Details
Comma tokens may exist only inside sequences or procedures. They must not exist within the top level of
parentheses.

W_OPEXP_WNA
Wrong number of arguments in operator expression, ‹(…)›.

Details
An operator expression should contain at least one argument. An operator expression need not actually contain
arguments if the arguments are accounted for in some other way. For example, a custom operator can produce its
own arguments, but this is unnecessary and should be avoided.

Note that this warning message may also occur if an intended function call does not have the opening parenthesis
adjacent to the function variable. For example, ‹…W

S()› will cause this warning message if the parentheses are
meant to be empty function call arguments. If a function call is intended, then the (highlighted) white-space must be
absent.

W_OPEXP_WNO
Wrong number of operators ‹&…|*|/|+|-|^|=|!=|<|<=|>|>=|++› in operator expression, ‹(…)›.

Details
An operator expression should contain exactly one operator, but need not actually contain an operator if the operator
is accounted for in some other way. For example, the operator can be placed after the ending parenthesis of the
operator expression as in ‹(3 5 9) +›, but this is considered quirky coding and should be avoided (it would cause
less problems if such an expression were written as ‹(+ 3 5 9)› with the (highlighted) operator inside the
parentheses).

Note that this warning message may also occur if an intended function call does not have the opening parenthesis
adjacent to the function variable. For example, ‹…W

S(…)› will cause this warning message if the parentheses are
meant to enclose function call arguments. If a function call is intended, then the (highlighted) white-space must be
absent.

W_PROC_CMS
Procedure with commas ‹,›.

Details
A procedure contains commas at the top level. In ETAC, a procedure (including the procedure of a function

definition ‹fnt:(…){…}›) usually contains semicolons ‹;› separating the token statements. Commas can be
used, but the relevant tokens will then be activated as TAC code not as ETAC code.

W_PROC_NLSC
No last semicolon ‹;› in procedure.

Details
The last token statement in a procedure does not end with a semicolon. In ETAC, a procedure (includes the
procedure of a function definition ‹fnt:(…){…}›) usually contains a semicolon ‹;› following the last token
statement. The semicolon can be omitted, but the last token statement will then be activated as TAC code not as
ETAC code.

W_SEACC_REQ
No sequence element access token ‹%›.

Details
A sequence element access token is required for a sequence element assignment ‹…%… :=›, sequence append
‹… +:=›, and compound object append ‹… ++:=› statements where the destination object is a sequence element
‹…%…›. If the destination object is not intended to be a sequence element, then this warning message may be
ignored. This warning message applies if the programmer had mistakenly omitted the sequence element access
token from the said statements. A statement of the form ‹VW

S[…] (:=|++:=|+:=) …;› (where V is a variable) is
equivalent to ‹[…] (:=|++:=|+:=) …; V›, which may not be what is intended. If the intention is to assign or
append to a sequence element, then the form of the statement should be ‹V%[…] (:=|++:=|+:=) …;› with the
(highlighted) sequence element token present.

W_SEQ_DUP
Empty sequence ‹[]› not duplicated before allocation ‹… :-›.

Details
An empty sequence is not duplicated before being allocated to a variable. When an empty sequence is allocated to a
variable within a procedure (including the procedure of a function definition ‹fnt:(…){…}›), it is usually
intended that the sequence remain empty at the start of each call to that procedure. This is achieved by duplicating
the empty sequence using the object replication expression ‹@› or dupl command before being allocated so that the
code within the procedure assigns elements to the duplicated sequence rather than to the original empty sequence. If
it is intended that the initial empty sequence retain its elements for each procedure call then the object replication
expression must be absent.

In the following example, the programmer wants to have the variable Seq initialised with an empty sequence each
time the function MyFnt is called.

MyFnt :- fnt:()

{

Seq :- @ []; [* A new empty sequence is allocated to Seq each time this
function is called *]

 Seq +:= 10; [* Seq now contains only the element 10. *]

};

Without the (highlighted) object replication expression, Seq would retain all the 10’s assigned on each previous
call to MyFnt.

W_STMT_NESC
No semicolon ‹;› at end of statement.

Details
A statement does not end with a semicolon. Statements usually end with a semicolon. However, if it is intended
that the token following the statement be activated before the statement, then the semicolon must be absent. For
example, token A is activated before statement S in ‹S A;› because there is no semicolon following S (giving rise
to this warning message). A semicolon placed after S would cause it to be activated before token A.

The statements affected by this warning message are: ‹data:{…}›, ‹fnt:(…){…}›, ‹if…endif›, ‹when…
endwhen›, ‹do {…}›, ‹…++›, ‹…--›, ‹…--›, and ‹….{…}›.

WHEN_B_NONE
Unmatched ‹endwhen› of ‘when’ statement, ‹when…endwhen›.

Details
A ‘when’ statement must begin with the ‹when› token.

WHEN_BAD
Invalid ‘when’ statement structure, ‹when…endwhen›.

Details
A ‘when’ statement must have the following structure:
‹when … ^(is = != < > <= >=) *(… then {…}) [else {…}] endwhen›,
where ^(X) indicates that only one of the space-separated options in X must be present, *(X) indicates one or more X,
and [X] indicates that X is optional.

WHEN_E_NONE
Unmatched ‹when› of ‘when’ statement, ‹when…endwhen›.

Details
A ‘when’ statement ‹when…endwhen› must end with the ‹endwhen› token.

	Error and Warning Code Reference
	ADDAP_A_BAD
	ANDAP_A_BAD
	BA_COCOMB
	BA_DO
	BA_EXITDOIF_DONEXTIF
	BA_SCACCESS
	BA_SCASN
	BA_SCLACCESS
	BA_SCLASN
	BA_SEACCESS
	BA_SEQAP
	BAD_ARG
	BAD_CMD
	BAD_COMMA_POS
	BAD_COMMA_SCOPE
	BAD_DEC
	BAD_END_OPR_BRAK
	BAD_END_PROC_BRAK
	BAD_END_SEQ_BRAK
	BAD_INCL_FILE
	BAD_INSTR
	BAD_INT
	BAD_LABEL
	BAD_MARK_VAL
	BAD_MEM_VAL
	BAD_OBJ_TYPE
	BAD_OBJ_VAL
	BAD_OPR
	BAD_PP_COMMAND
	BAD_PP_OPERAND_NUM
	BAD_PP_OPR
	BAD_PP_THEN
	BAD_PPNAME
	BAD_SEMICOLON_SCOPE
	BAD_STRING
	BAD_SYNTAX
	BAD_TERM_TOK
	BS_DO
	BS_EXITDO_DONEXT
	BS_FNT
	BS_FNTCALL
	BS_IF
	BS_SCASN
	BS_SCLASN
	BS_SELN
	BS_WHEN
	COCOMB_A_BAD
	COPYASN_A_BAD
	DATA
	DATA_A_NONE
	DEC_A_BAD
	DIVAP_A_BAD
	DO_BODY_NONE
	DO_REPA_BAD
	DOFOR_FROMA_BAD
	DOFOR_STEPA_BAD
	DOFOR_TOA_BAD
	DOFOR_VAR_BAD
	DONEXT_SC_NONE
	DONEXTIF_A_BAD
	DOWHILE_A_BAD
	DOWITH_OF_NONE
	DOWITH_OFA_BAD
	DOWITH_VAR_BAD
	DUPL_COMMA
	EMPTY_STACK
	EXITDO_SC_NONE
	EXITDOIF_A_BAD
	EXPECTED_CLOSE_BRAK
	EXPECTED_OPEN_BRAK
	EXPECTED_THEN
	FEW_SEQ_ELMS
	FEW_STACK_ARGS
	FNT_A1_NONE
	FNT_A2_NONE
	FNT_AP_BAD
	FNTCALL_A1_BAD
	FNTCALL_A2_NONE
	GENERAL_ERR
	IF_A_NONE
	IF_AC_BAD
	IF_B_NONE
	IF_BAD
	IF_E_NONE
	INC_A_BAD
	INVALID_LABEL
	LIBERR
	MISMATCHED_BRAKS
	MISSING_ARG
	MISSING_ENDIF
	MULTAP_A_BAD
	NEG
	NEG_A_BAD
	NO_APP_FNT
	NO_DICT_ITEM
	NO_INCL_FILE
	NO_LIB_ACCESS
	NO_LOADED_LIB
	NO_PP_THEN
	NOT_A_CMD
	NOT_A_CMD_LBL
	NOT_AN_OPR
	NOT_AN_OPR_LBL
	NOT_LIB
	OBJINS_A1_BAD
	OBJINS_A2_BAD
	OBJINS_ASN_BAD
	ORAP_A_BAD
	RES_WRD
	SCACCESS_A1_BAD
	SCACCESS_A2_BAD
	SCASN_A1_BAD
	SCASN_A2_BAD
	SCLACCESS_A_BAD
	SCLASN_A_BAD
	SCLASN_ASN_BAD
	SEACCESS_A1_BAD
	SEACCESS_A2_BAD
	SEAP_A1_BAD
	SEAP_A2_BAD
	SEAP_ASN_BAD
	SEASN_A1_BAD
	SEASN_A2_BAD
	SEASN_ASN_BAD
	SELN_A1_BAD
	SELN_AML_BAD
	SEQAP_A_BAD
	SEQINS_A1_BAD
	SEQINS_A2_BAD
	SEQINS_ASN_BAD
	SIZE
	SIZE_A_BAD
	SIZE_A_NONE
	SUBAP_A_BAD
	TOO_MANY_ENDIF
	UNDEF_PPNAME
	UNDEFINED_CUST
	UNEXPECTED_ELSE
	UNEXPECTED_ELSEDEF
	UNEXPECTED_THEN
	UNEXPECTED_TOK
	VOID_BAD
	PAREN_CMS_BAD
	W_OPEXP_WNA
	W_OPEXP_WNO
	W_PROC_CMS
	W_PROC_NLSC
	W_SEACC_REQ
	W_SEQ_DUP
	W_STMT_NESC
	WHEN_B_NONE
	WHEN_BAD
	WHEN_E_NONE

